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ABSTRACT 

 Tropical weather systems are important components of the global circulation that 

span a wide range of spatial and temporal scales. On the large-scale end of the spectrum, 

the Madden-Julian Oscillation (MJO) is found to be the dominant mode. Atmospheric 

wave motion due to Earth’s rotation and gravity fills the spectrum from weeks to hours 

and from tens of thousands of kilometers to a few tens of kilometers. The thermally 

driven convective processes at smaller scales are chaotic in nature, which poses an 

intrinsic limit on the long-term predictability of tropical weather through coupling and 

scale interaction. This dissertation seeks to identify the predictability limits for tropical 

atmosphere, establishing an upper bound in expected prediction skill of these weather 

systems. Other scientific questions this dissertation answered are how much future 

satellite observations can improve the prediction skill, and how to design adaptive 

multiscale data assimilation methods that make better use of the available observations. 

 Using a convection-permitting numerical model, Weather Research and 

Forecasting (WRF), an MJO active phase during October 2011 is simulated. The practical 

predictability limit is estimated from an ensemble forecast with realistic initial and 

boundary condition uncertainties sampled from the operational global model forecasts. 

Predictability limit is reached when the ensemble spread is indistinguishable from 

random climatological draws. Results indicate predictability is scale dependent. There is 

a sharp transition from slow to fast error growth at the intermediate scales (~500 km), 

separating the more predictable large-scale components (~2 weeks) from the less 

predictable small-scale components (<1 day). The intrinsic predictability limits, estimated 

by reducing the uncertainties to 1%, are >2 weeks for larger scales and <3 days for small 
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scales. An Observing System Simulation Experiment (OSSE) is conducted using the 

Ensemble Kalman Filter (EnKF) to evaluate the potential improvements in the prediction 

skill through assimilating current and future satellite observations. Results show that the 

currently available temperature, humidity profiles and wind vectors retrieved from 

infrared and microwave satellite sounder data can extend the skillful forecast lead time by 

as much as 4 days for the larger scales. With prospective improvement in resolution and 

complementary sampling strategies, the prediction skill can be further improved, 

especially for the smaller scales. These results shed lights on the need, design and cost-

benefit analysis of future observing systems for better tropical weather prediction. 

For ensemble filtering, covariance localization and inflation methods are required 

to account for sampling errors due to limited ensemble size and unrepresented model 

errors. Tuning the localization and inflation to achieve optimal filter performance is a 

laborious process, thus adaptive algorithms are much favored. In this dissertation, an 

adaptive covariance relaxation (ACR) method is proposed and tested in the Lorenz 40-

variable system. The method is able to account for observations that are irregular in 

spatial and temporal distribution, which is typical for the tropics. In pursuit for an optimal 

localization method, the sensitivity of localization distance to ensemble size, model 

resolution, and observing network are comprehensively tested in a multiscale quasi-

geostrophic (QG) model. The best localization distance is found dependent to the 

dominant scale of a system, which motivates the implementation of a multiscale 

localization for tropical weather. Some behavior related to nonlocal and irregular 

observation are also documented in this dissertation. 
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Chapter 1  

 

Overview of the challenges in the analysis and prediction of multiscale 

tropical weather systems 

1.1 Introduction to multiscale tropical weather systems 

Tropical atmosphere consists of weather systems spanning a wide range of spatial 

and temporal scales. Figure 1.1 illustrates the ranges of spatial and temporal scales 

associated with different kinds of tropical weather systems. At the planetary scale, the 

Madden-Julian Oscillation (MJO) is found to be the dominant mode of intraseasonal 

variability with typical periods of 20-100 days (Madden and Julian 1971, 1972; Zhang 

2005). The active phase of an MJO is characterized by enhanced deep convection and 

intense precipitation that propagates eastward at a speed around 5 m s-1. Within the MJO 

envelope, a wide variety of convectively-coupled equatorial waves (CCEWs) reside, 

including equatorial Rossby (ER), Kelvin, mixed-Rossby-gravity (MRG), and inertia-

gravity (IG) waves.. A comprehensive review of observations and dynamics of CCEWs 

was provided by Kiladis et al. (2009). The equatorial Rossby waves are large-scale 

“cyclone pairs” that propagate westward at a speed around 4.5 m s-1 (Kiladis et al. 2009). 

The equatorial Kelvin waves are also known as the super-cloud clusters that propagates 

eastward at a speed of 15-20 m s-1 (Nakazawa 1988; Dunkerton and Crum 1995). The 

MRG waves propagate westward at a speed of 15-20 m s-1 and have the potential to 
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develop into tropical cyclones (Takayabu and Nitta 1993; Dickinson and Molinari 2002). 

The IG waves span a wide range of spatiotemporal scales, ranging from smaller-scale 

diurnal variations to larger-scale 2-day waves (Haertel and Kiladis 2004). At the sub-

diurnal scales, convective systems such as the tropical squall lines can be found. 

1.2 Numerical simulation of tropical weather systems 

 Simultaneously resolving systems at different scales has been a challenge for 

numerical simulation, because the computational domain needs to be large enough to 

capture the large-scale components as well as having small enough grid spacing to 

resolve the small-scale components. Huge computational cost is required to fulfill this 

dual requirement of domain size and resolution before it is feasible to study the 

interaction among systems at different scales. Recent development in high-resolution 

simulation of the tropical weather start to show better agreement with observation than 

previous coarse-resolution global models, indicating the importance of resolving smaller-

scale components that are likely coupled with the larger-scale ones. For example, Wang 

et al. (2015) conducted a convective-permitting (9-km resolution) simulation of the 

October and November 2011 MJO events observed during the Dynamics of MJO 

(DYNAMO; C. Zhang et al. 2013) field campaign, using the Weather Research and 

Forecasting (WRF) model. They showed promising results that, thanks to the use of 

reanalysis data for model initialization and a nudging method to keep model solution 

from deviating too far away from large-scale observed dynamic and thermodynamic 

structures, the simulated MJO propagation, precipitation episodes, and moist static 
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energy budget of the MJO events all match relatively well with observations. However, 

there are clearly room for improvement in terms of finer-scale details of the simulated 

MJO events. The equatorial Kelvin wave and inertia-gravity waves have a lot of 

mismatches with the observation due to lack of constraints at smaller scales. At these 

scales, bias and errors in parameterization also pose some challenges in correctly 

representing the physical processes that are not well resolved. 

1.3 Assessment of the predictability limits of the tropical weather systems 

Lorenz (1963) first discovered the chaotic behavior of a dynamic system due to 

sensitivity to the initial condition, which pose a finite limit to the predictability of this 

system. Small errors in the initial condition may grow and eventually render the long-

term predictions to have no skill as comparing to random draws from climatology. The 

concept of atmospheric predictability can be grossly categorized into intrinsic versus 

practical predictability (Lorenz 1996, Melhauser and Zhang 2012). Intrinsic predictability 

refers to the ability to predict given nearly-perfect representation of the dynamical system 

(by a forecast model) and nearly-perfect initial/boundary conditions, an inherent limit due 

to the chaotic nature of the atmosphere (Lorenz 1963, 1969; Zhang et al. 2003, 2007; Sun 

and Zhang 2016). Practical predictability, sometimes also referred to as the prediction 

skill, is the ability to predict given realistic uncertainties in both the forecast model and 

initial and boundary conditions (Lorenz 1982, 1996; Zhang et al. 2002, 2006) that can be 

both large at present. The limit of practical predictability can potentially be extended 

through the use of more accurate initial conditions (resulting from better data assimilation 
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methods and/or observations) and/or better forecast models (better model physics, 

numerics, and/or resolution).  

Previous studies suggest that the predictability of mid-latitude weather systems 

can be intrinsically limited due to the chaotic nature of moist convection and the rapid 

upscale error growth, as shown for winter cyclones (Zhang et al. 2003, 2007; Sun and 

Zhang 2016) and summertime continental mesoscale convective systems (e.g., Bei and 

Zhang 2007; Melhauser and Zhang 2012; Selz and Craig 2015; Zhang et al. 2016). For 

tropical weather, tropical cyclones are also found to have similar limits in predictability 

due to moist convection (e.g., Zhang and Sippel 2009; Tao and Zhang 2015; Judt et al. 

2016). 

 How predictable are the multiscale tropical weather systems? Is the predictability 

of CCEWs very limited due to coupling with moist convections in the tropics? Does each 

component of the multiscale tropical weather system have a unique predictability limit 

related to its scale (Bei and Zhang 2014)? At the planetary scale, several studies have 

documented their estimation of predictability of MJOs from global model simulations. 

Neena et al. (2014a, b) estimated from global circulation model simulations that MJO has 

the potential predictability of 35~45 days and the current prediction skill is 20~30 days. 

Hamill and Kiladis (2014) evaluated the current Global Ensemble Forecast System 

(GEFS) MJO simulations and found that the simulated MJO propagation speed is too 

slow and precipitation is overestimated. Miyakawa et al. (2014) estimated from a global 

cloud-resolving model that the current prediction skill for MJO is 27 days. The 

predictability is found to be dependent on MJO phases. Simulations initialized from 

active phases appear to have better predictability (Waliser et al. 2003; Nasuno et al. 2013; 
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Neena et al. 2014a,b). The models tend to generate too much precipitation during the 

suppressed phase, thus have difficulties predicting the correct timing of MJO initiation. 

Ling et al. (2014) suggested that MJO predictability may differ greatly when considering 

global or local scales and during different MJO phases. Such scale dependency also 

results in a more limited predictability estimated from higher-resolution simulation than 

coarser-resolution global models (Miyakawa et al. 2014). More recently, Zhang et al. 

(2017) also suggested that initiation of this MJO event may have resulted from a global 

circumnavigating signal, which can be potentially predictable at the planetary scale 

several weeks in advance. 

 To the best of my knowledge, the predictability of multiscale tropical weather 

beyond tropical cyclones and MJOs is rather underexplored. Using a then-operational 

global prediction system under a perfect model assumption, Reynolds et al. (1994) found 

that the internal error growth rate in the tropics is several times slower than that in mid-

latitudes while the external error growth rate due to model deficiencies is considerably 

larger. Using a global convection-permitting aqua-planet model configured with different 

resolutions, Mapes et al. (2008) revealed that predictability of tropical weather can be 

potentially limited by error growth from mid-latitude moist baroclinic systems. Although 

there is usually an average predictability for a system, the actual predictability is quite 

variable and depends on the state of the system itself (Kalnay 2003). The growth rate of 

errors also depends on scales and variables (Bei and Zhang 2014). To further characterize 

the error growth associated with each component of the multiscale tropical weather 

system, a systematic assessment of predictability is performed in chapter 2 using 

ensemble techniques. 
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1.4 Evaluation of observation impact from data assimilation 

The simulated MJO events in Wang et al. (2015) agrees well with observation at 

the large scales, while their smaller-scale details are not yet matching exactly with the 

observation. To further improve the simulation for systems at smaller scales, the data 

assimilation system should be tuned for optimal performance for a certain weather system 

of interest. In operational centers, the design of an ensemble assimilation and prediction 

system usually involves the consideration of temporal and spatial scale of the weather 

system, the availability of observations, as well as computational cost. For weather 

systems at smaller scales, denser observations should be assimilated at a higher temporal 

frequency comparing to weather systems at larger scales. The presence of multiple 

components at different scales in the complex tropical weather system poses some 

challenge in the design of a unified data assimilation scheme for this system. The larger 

and smaller scale components are expected to require different configurations.  

While the ensemble simulations performed in chapter 2 provide estimates of the 

predictability of tropical weather at different scales, a follow-up Observing System 

Simulation Experiment (OSSE) will be performed in chapter 3 to evaluate the potentials 

in assimilating current and future satellite observations for improving the predictability, 

given that there are room for improvement, especially for components at smaller scales. 

An OSSE first runs a model simulation and considers it as the truth, then generate 

synthetic observations from the truth, and performs data assimilation trials using these 

synthetic observations and evaluate the performance of data assimilation. Unlike the real-

data scenario where the truth is unknown, the perfect knowledge of the truth allows a 
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more thorough error statistics to be calculated in an OSSE scenario. Without the 

complication from quality control and cross calibration between model and observation 

required for the real-data scenario, an OSSE using perfect model assumption can help one 

focusing on the performance of data assimilation itself. 

However, the caveat of OSSEs is that the results can be too optimistic when 

model errors and errors associated with the preparing and quality control process of 

observations are not accounted for. The findings from an idealized OSSE should always 

be complemented by further experiments in the real-data scenarios. 

1.5 Development of adaptive multiscale data assimilation methods 

Data assimilation is the process of incorporating observations to improve the 

accuracy of model initial conditions. Among the popular choices of data assimilation 

methods are the variational approach (e.g. 4DVar) and the ensemble-based filtering 

methods. Ensemble Kalman filter (EnKF; Evensen 1994) is a Monte Carlo approximation 

of the extended Kalman filter, using an ensemble of model realizations to sample the 

probability distribution. Observations are used to update both the ensemble mean and 

ensemble perturbations so that the analysis ensemble characterizes the mean and variance 

of the posterior probability distribution as given by the Bayesian theorem. Then, the 

model propagates the analysis ensemble forward in time to provide prior distribution for 

the next assimilation cycle. Through ensemble forecast, the flow-dependent background 

error covariance estimated from the ensemble accounts for the errors of the day, and thus 

ensure optimal use of local observation to adjust the model state. The EnKF algorithm 
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used in the OSSE in chapter 2 follows the ensemble square root filter (EnSRF; Whitaker 

and Hamill 2002) formulation, which also uses a serial assimilation strategy (Anderson 

2003).  

Although EnKF has the advantage of providing flow-dependent background error, 

the use of a limited-size ensemble to sample the high-dimensional state space does pose a 

lot of challenges. Sampling errors in the ensemble-estimated background error covariance 

due to small ensemble size requires the covariance to be localized (Hamill et al. 2001). 

The use of an imperfect model may cause model uncertainties to be unrepresented in the 

background error covariance, and thus requires inflation of the ensemble spread to 

prevent catastrophic filter divergence (Mitchell and Houtekamer 2000; Anderson and 

Anderson 1999; Zhang et al. 2004; Whitaker and Hamill 2012).  

Tuning of the covariance localization and inflation is very costly, therefore 

adaptive methods were introduced to estimate the amount of covariance inflation 

according to innovation statistics (Wang and Bishop 2003; Anderson 2007, 2009; Li et al. 

2009; Miyoshi 2011), and to estimate an optimal localization function (Anderson 2007, 

2012; Bishop and Hodyss 2007, 2009; Anderson and Lei 2013; Zhen and Zhang 2014; 

Flowerdew 2015). 

Given the often-limited observation availability in the tropics, a well-tuned data 

assimilation method is of vital importance in order to make the best use of the available 

observations. The tropical observing network is highly variable in space and time 

distribution, which is a quite challenging scenario for adaptive algorithms to operate in. 

An ideal adaptive covariance inflation method should be able to adjust the amount of 

inflation according to the density and quality of observations. One such method, called 
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Adaptive Covariance Relaxation (ACR) is introduced in chapter 4, and tested in the 

Lorenz (1996) 40-variable model framework. 

Equally challenging is the choice of an optimal localization function for the 

tropical observing network. Due to the multiscale nature of the tropical weather, it iss 

difficult to specify one localization function that is optimal for all components at different 

scales. It is necessary to use a multiscale localization scheme (Zhang et al. 2009; Miyoshi 

and Kondo 2013; Li et al. 2015; Buehner and Shlyaeva 2015). However, the theory of 

optimal localization is complicated by the fact that localization function does not only 

dependent on the dominating scale of a system, it is also influenced by ensemble size and 

observing network properties. Previously proposed adaptive localization methods (e.g. 

Zhen and Zhang 2014) are not necessarily comprehensive and independent to the 

particular dynamical system and observing network. To extend the optimal localization 

theory to the scenario where multiple scales are present in a system, a sensitivity 

experiment is performed in chapter 5 using a quasi-geostrophic (QG) model, a simplified 

yet realistic atmospheric system. The experiment explores the behavior of best-

performing localization distance in response to changes in model dynamics, resolution, 

ensemble size, and observation density and accuracy, which provide insights on the 

development of a scale-aware adaptive localization method.  
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Figure 1.1. The spatial and temporal scales of multiscale tropical weather systems, 

including the Madden-Julian Oscillation (MJO), equatorial Rossby (ER) and Kelvin 

waves, mixed-Rossby-gravity (MRG) waves, tropical cyclones (TC), inertia-gravity 

(IG) waves, tropical squall lines, and (semi) diurnal convective systems. 
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Chapter 2  

 

Practical and intrinsic predictability of multi-scale weather and 

convectively-coupled equatorial waves during the active phase of an 

MJO 

2.1 Introduction  

 In 2011, the Dynamics of MJO (DYNAMO) field campaign is conducted over the 

Indian Ocean to gather more observations, to advance physical understanding of MJOs, 

and ultimately to improve MJO prediction (Zhang et al. 2013; Yoneyama et al. 2013). 

Two moderate to strong MJO events occurred during October and November 2011, 

respectively, were well campaigned by the field campaign observations, as documented 

in Johnson and Ciesielski (2013). Recently, Wang et al. (2015) conducted a successful 

simulation of these MJOs using the Weather Research and Forecasting (WRF) model at 

the convection-permitting resolution with a grid spacing of 9 km. They show that the 

model is capable of reproducing most of the observed MJO features, including its 

eastward propagation, dynamical structure and the overall rainfall pattern and magnitude. 

Sensitivity experiments with the same regional WRF configuration in Zhang et al. (2017) 

subsequently demonstrated the crucial importance of the global circumnavigating mode 

in the MJO initiation and propagation. These results motivate the use of such a model as 

a proxy of the tropical atmosphere for studying its predictability. 
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 In this chapter, a systematic investigation of both the practical and intrinsic limits 

of multiscale predictability of tropical weather and CCEWs is conducted through a series 

of unprecedented convection-permitting regional-scale ensemble simulations. The 

resulting predictability estimates provide a benchmark for the future investigation with 

improved modeling systems. The model configuration and design of ensemble simulation 

are described in section 2.2. In section 2.3, an overview is given for the simulated 

features of CCEWs. The practical predictability is estimated in section 2.4, followed by 

an intrinsic predictability assessment in section 2.5. In section 2.6, the error growths are 

analyzed for CCEWs to illustrate their distinct predictability limits. Section 2.7 

summarizes the findings. 

2.2 Experimental design 

2.2.1 Model configuration and the control simulation 

 In this study, the WRF model version 3.4.1 (Skamarock et al. 2008) is employed 

to conduct simulations. The model configuration is similar to that described in section 2a 

of Wang et al. (2015). The computational domain covers the equatorial Indian Ocean and 

part of the Maritime Continent (20°S to 20°N, 50° to 120°E). The model grid is 445×778 

with 9 km spacing, and it has 45 vertical levels with 9 levels in the lowest 1 km and a 

model top at 20 hPa. The initial condition (IC) and lateral boundary condition (LBC) are 

specified by the ERA-Interim reanalysis data (Dee et al. 2011). The sea surface 

temperature (SST) for the lower boundary condition is updated every 6 h according to the 

ERA-Interim data.  
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 The WRF Double-Moment (WDM) scheme (Lim and Hong 2010) is used to 

parameterize cloud physics with modifications to the shape parameters and terminal 

velocity of snow. Both shortwave and longwave radiation are treated with the CAM 

scheme (Collins et al. 2004). Surface processes are represented with the unified Noah 

land surface model (Chen and Dudhia 2001) with variable surface skin temperature (Zeng 

and Beljaars 2005). Subgrid-scale turbulent eddy mixing is parameterized using the 

Yonsei University (YSU) PBL scheme (Hong et al. 2006). No cumulus parameterization 

is used, and organized convective motion is explicitly represented by the 9-km model 

grid. A control simulation of the MJO active phase is initialized at 00Z 12 October and 

integrated for 31 days that ends on November 12, 2011. Section 3 will provide an 

overview of the simulated period and validation of model simulation with observations. 

2.2.2 Ensemble simulation 

 A pair of 20-member ensembles are conducted to study the practical versus 

intrinsic predictability of the tropical weather systems and CCEWs. The first ensemble 

simulation designed to examine the practical predictability limits starts from October 18 

to November 2 (corresponding to the MJO phases 1 to 3). The IC and LBC ensemble 

perturbations are sampled from the operational European Center for Medium-Range 

Weather Forecasts (ECMWF) global ensemble forecasts archived in The Observing 

System Research and Predictability Experiment (THORPEX) Interactive Grand Global 

Ensemble (TIGGE). The TIGGE archives 15-day global forecasts of horizontal winds, 

temperature, geopotential height, and specific humidity at 8 pressure levels (1000, 925, 

850, 700, 500, 300, 250, and 200 hPa) at 12-h intervals. The then-operational ECMWF 
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ensemble has a horizontal resolution of 32 km (T639) for the first 10 days, and 63 km 

(T319) from day 10 to 15. Ensemble perturbations from the first 20 TIGGE members are 

interpolated to the 9-km WRF model grid and to 6-h intervals in time, then added to the 

control IC and LBC generated from ERA-Interim data. Since the TIGGE ensemble 

forecasts are valid at the same time as the IC and LBC being perturbed, the ensemble 

perturbations are physically consistent with the flow-dependent realistic uncertainties of 

the unperturbed model atmosphere. With the global model uncertainties downscaled to 

the regional model at the 9-km resolution, the ensemble forecasts designed herein will 

provide a realistic estimate of the practical predictability of the tropical weather and 

CCEWs during the MJO active phase under a perfect model assumption.  

 The intrinsic predictability is estimated from another set of 20-member ensemble 

simulations with the IC and LBC perturbation uncertainties reduced to 1 % in terms of 

error energy (or 10% error magnitude) comparing to the ensemble described above, 

which is a level of accuracy that is unlikely achievable in the foreseeable future. In other 

words, we seek the upper bound in prediction using a perfect model under nearly perfect 

initial and boundary conditions following Lorenz (1996). 

2.2.3 Predictability metric 

 The limit in predictability will be quantified in terms of relative magnitude 

between the reference and error spectral energy, R(k) and E(k), defined respectively as  

𝑅 𝑘 = 	 𝑥
56,58

9

56:;58:<5:
 

,   (2.1) 
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and 

𝐸 𝑘 = 	
1

𝑁 − 1
56:;58:<5:

𝑥?@ 56,58

9
A

@<B

 

,   (2.2) 

where x denotes the variable in consideration, 𝑥 = B
A

𝑥@A
@<B  is the ensemble mean, 

𝑥@?	 = 	𝑥@ − 𝑥 is the ensemble perturbation, subscript i = 1, 2, …, N indexes the ensemble 

member, the hat denotes the Fourier transformation in two horizontal dimensions and the 

subscripts kx and ky are the zonal and meridional wavenumbers, respectively. Following 

Bei and Zhang (2014), the reference and error energy are decomposed into spectral 

components (i.e. a function of global wavenumber k) and calculated separately for each 

model variable to demonstrate the scale- and variable-dependency in predictability. The 

variables of interest in this study are the u- and v-component wind, temperature, specific 

humidity, and precipitation. For the sake of simplicity, the u, v wind are combined as 

kinetic energy (KE), i.e. B
9
(𝑢9 + 𝑣9). The reference and error KE are calculated by first 

evaluating (2.1) and (2.2) for u, v and then taking their average.  

 Bei and Zhang (2014) used only one perturbed simulation and its difference with 

the unperturbed (control) simulation to measure the error energy. Only one realization of 

forecast error is available, therefore, the predictability estimate is less robust. More 

ideally, one can use an ensemble to sample the forecast error and provide a much more 

robust estimate for predictability. In their predictability study on tropical cyclone 

intensity, Judt et al. (2016) defined an error energy as the averaged squared differences 

between two members from a 20-member ensemble, and the reference energy was 
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defined as the averaged energy from each member. The predictability limit was defined 

as the forecast time at which error saturates, i.e. the error energy becomes close enough to 

the reference energy. One caveat of such predictability limit definition is that the error 

growth usually slows down as approaching saturation so that the exact saturation time is 

difficult to evaluate due to this asymptotic behavior.  

 In this study, a slightly different definition is used. The error energy (noise) is 

defined as the ensemble variance and the reference energy (signal) is defined as the 

energy associated with the ensemble mean. As errors grow, the reference energy from 

ensemble mean will decrease due to the smoothing among ensemble members. The 

predictability limit is defined as the forecast time at which error energy reaches and 

exceeds the reference energy (signal-to-noise ratio drops below 1). 

2.3 Overview of the control simulation 

 The control simulation conducted in this study is mostly consistent with the 

control experiment results from Wang et al. (2015), except that the simulation starts from 

a later time and analysis nudging is not performed. The active MJO phase features the 

eastward propagation of large-scale organized convection and precipitatioon. Figure 2.1 

compares the 5-day accumulated precipitation from the control simulation to the Tropical 

Rainfall Measuring Mission (TRMM) observations. During the simulated period, the 

precipitation center moves across the Indian Ocean (phases 1 to 3) and to the Maritime 

Continent (phases 4 to 5). The propagation of the MJO is not at a constant speed. Phase 2 

takes much longer time (10 days) than the following phases. Consistent with Wang et al. 
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(2015), the eastward propagation of the simulated precipitation agrees with the 

observation as shown in the Hovmöller diagrams in Fig. 2.2. At 850 hPa, westerlies 

(easterlies) are found west (east) to the precipitation center, which is the typical large-

scale MJO flow pattern.  

 At smaller scales, the simulated precipitation shows inertia-gravity (IG) wave 

signals over the Maritime Continent (90° to 120°E). The propagation direction of these 

IG waves follows the prevailing zonal wind, i.e. westward-propagating IG (WIG) waves 

in easterly wind and vice versa. At least some of these waves and precipitation patterns 

over the Maritime Continent are likely forced by the thermal diurnal cycles associated 

with the land mass (Mapes et al. 2003; Love et al. 2011). The precipitation over the 

Indian Ocean (50° to 90°E) is organized into several 2-day episodes which are modulated 

by the phase of the MJO and several episodes of westward-propagating equatorial Rossby 

waves and eastward-propagating equatorial Kelvin waves (hereafter referred to as Rossby 

and Kelvin waves for simplicity). The model simulation of these finer scale features is 

less accurate than the MJO signal itself as compared to the observations. There are 

generally mismatches in timing of the IG waves over the Indian Ocean.  

 However, the model simulation has a relatively good representation of the spectral 

modes of the multiscale CCEWs. Figure 2.3 compares the Wheeler and Kiladis (1999) 

space-time spectra (WK spectrum) of precipitation between the observation and the 

control simulation. Comparing to the TRMM observation, the WRF simulation captures 

most of the CCEW modes although with errors in their signal strengths. The zonal 

wavelengths and time periods of the simulated waves agree with the observation, except 

that Kelvin waves are propagating more slowly and the large-scale eastward propagating 
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IG (EIG) waves are missing the 2.5-day period in the simulation. The signal strengths of 

diurnal WIG, MRG, and Rossby waves are weaker in the simulation than in the 

observation, while Kelvin wave and MJO signal strengths are comparable to the 

observation. The large-scale 2-day WIG wave signals are simulated stronger than the 

observation. The WK spectra are calculated for a single MJO active phase during the 

simulated one month period, which is a relatively short sample size. Therefore, the large-

scale low-frequency wave signals are expected to have some errors due to sampling 

noises. The errors in model and the specified initial and boundary conditions also cause 

the simulated WK spectra to differ from observation. Despite of these descrepancies, the 

WRF simulation provides a reasonable representation of the observed CCEW and well 

serves the need as a control simulation. 

2.4 Limit of practical predictability 

 To estimate the practical predictability (prediction skill) of the tropical multi-scale 

weather and CCEWs, the error growth during the first ensemble simulation is 

investigated in this section. Figure 2.4 shows the longitude-time Hovmöller diagram of 

root mean difference total energy (RM-DTE; as defined in Melhauser and Zhang 2012), 

which is a combined measure of errors in horizontal winds and temperature. As forecast 

time progresses, the overall error increases due to the realistic uncertainties from the 

LBC. Larger RM-DTE is located near the region of stronger precipitation. There are 

apparent westward-propagating streaks of RM-DTE that are related to the CCEWs over 

the entire domain. The errors associated with the IG waves over the Maritime Continent 
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have diurnal maxima following the peak precipitation, and there is no obvious trend 

during the two week period. On the other hand, the three successive moist phases of 

Kelvin waves over the Indian Ocean has increasingly larger errors. Such error growth 

behavior indicates a flow dependency in predictability which is more limited in the areas 

of precipitative systems.  

 Figure 2.5 show the spectra of reference and error energy, E(k) and R(k), for KE, 

temperature, specific humidity, and precipitation. Let l = k -1 be the horizontal 

wavelength, the spectra are plotted as a function of k but labelled with its corresponding l 

values. The time-averaged reference KE spectrum (black line in Fig. 2.5a) has a -5/3 

slope at small scales, and transitions to a steeper -3 slope at around l = 500 km toward 

larger scales. According to Lorenz (1969) and Rotunno and Snyder (2008), there will be a 

predictability limit for the small scales due to its shallower spectral slope. The 

temperature and humidity spectra (Figs. 2.5b and 2.5c) have a similar shape compared to 

the KE spectrum, while the precipitation spectrum (Fig. 2.5d) is much shallower. Error 

energy spectral evolution can be viewed from the colored lines with time progresses from 

blue to red. At t = 0, the initial error KE from the ECMWF analysis is about one order of 

magnitudes smaller than the reference energy at large scales, and becomes comparable 

with reference energy at intermediate scales around l = 500 km. The initial error is 

artificially too small at small scales, because the ECMWF analyses are archived at a 

relatively coarse resolution (32 km) thus not fully resolving l < 200 km. The error growth 

is more or less linear at larger scales, while the small-scale error saturates almost 

immediately. At small scales, the error energy exceeds the time-averaged reference 



20 

energy, indicating the loss of predictability. Compared to other variables, precipitation 

has a wider range of scales with lost predictability after several days of forecast. 

 To further illustrate the time evolution of errors at different scales, the reference 

and error energy are averaged over three arbitrarily selected scale ranges: large 

(l > 2000 km), intermediate (200 < l < 2000 km), and small (l < 200 km), and their time 

series are shown in Fig. 2.6. The errors in KE, temperature and humidity have similar 

multi-stage growth behavior as described in Zhang et al. (2007). Small-scale errors grow 

the fastest in the first 12 hours, then after saturation they stay at relatively the same level. 

Large- and intermediate-scale errors grow slowly during the whole simulation period, and 

the large-scale error never reached reference energy for KE. The predictability limit not 

only depends on the rate of error growth, but is also complicated by the variations in 

reference energy. For temperature, the reference energy has a clear diurnal cycle at both 

large and small scales. The large-scale reference energy also appear to be modulated by 

the low-frequency waves, the humidity reference energy has three minima that are 

associated with the precipitation episodes over the Indian Ocean. For precipitation, the 

small- and intermediate-scale error energy exceeds their corresponding reference energy 

very early in the simulation, and the large-scale error energy is comparable to the 

reference after 4 days of simulation but the exact time for loss of predictability is 

uncertain due to the constantly varying reference energy.  

 Figure 2.7 plots the estimated practical predictability limits (thick lines) as a 

function of horizontal wavelength. At large scale, the KE and temperature have practical 

predictability limits up to 15 days, followed by the specific humidity that has a limit of 8 

days, and practical predictability of precipitation is limited to only 3 days. The 
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predictability of all variables dropped significantly across the intermediate scale. The 

practical predictability is limited to less than 12 hours for KE, temperature, and specific 

humidity for scales l < 200 km, and l < 800 km for precipitation. 

2.5 Limit of intrinsic predictability 

 In this section, the intrinsic predictability limit is identified by investigating the 

second ensemble simulation with IC and LBC error energy reduced to 1%, a level of 

accuracy that is unlikely attainable in the foreseeable future. Figure 2.8 shows the time 

series of error energy of this new ensemble (red) for KE and precipitation at three scales 

and compares their error evolution to the original ensemble with 100% error (blue). 

When error energy is reduced to 1%, the large- and intermediate-scale error KE 

(Figs. 2.8a and 2.8b) still grows at a similar rate as the 100% error case during most of 

the simulation period, although there is some indication of increased error growth rate 

during the first 3 days. By the end of simulation, error KE from the 1% error case 

remains an order of magnitude lower than that from the 100% error case. This indicates 

that the intrinsic predictability for these scales are likely achievable beyond the 15-day 

simulation period, since the predictability horizon can be extended by reducing the IC 

and LBC errors. 

 On the other hand, the small-scale error KE (Fig. 2.8c) grows much more rapidly 

and the reduced error only delay the loss of predictability by about 1 day. This behavior 

is as expected accordingly to Rotunno and Snyder (2008) because of the -5/3 power law 

of small-scale KE. The intermediate-scale KE error growth rate is higher at the beginning 
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of the simulation, because part of the intermediate scale range has a shallower KE 

spectrum (200 < l < 500 km). The temperature and humidity error energy results for the 

1% error case are similar to KE (not shown), and precipitation (Figs. 2.8d~f) also 

displays similar behavior but its range of scales that have limited predictability is much 

wider than other variables. The intrinsic predictability limits are also plotted as thin lines 

in Fig. 2.7 as a function of horizontal wavenumber. For the -5/3 power law range 

(l < 500 km), theories predict that predictability will be limited. The results are consistent 

with theory that reducing the IC and LBC error perturbations to 10% does not increase 

the predictability limit 10 times. The intrinsic predictability limit for KE is about 10 days 

at l = 500 km and decreases to < 1 day at small scales. The same predictability limit is 

true for other variables such as temperature and humidity except for precipitation which 

has more limited intrinsic predictability. 

 For regional models, the specification of LBC is nontrivial for the accuracy of 

simulation. To evaluate the relative importance of IC and LBC, an extra set of ensemble 

simulation is conducted with perturbations (from 100% error) only added to the IC, and 

the results are plotted in Fig. 2.8 as gray lines (IC error only). For large- and 

intermediate-scale KE, the LBC error contributes a lot more to the overall error growth, 

without LBC error, the error energy remains at similar IC error level throughout the 

simulation. However, for small-scale KE, a correct LBC does not help to reduce the 

initial error growth; it only slightly reduces errors later in the simulation when they are 

already saturated. For precipitation, the large-scale error energy is reduced by specifying 

a correct LBC, while the intermediate- and small-scale errors are not significantly 

reduced before saturation. The intermediate-scale precipitation error is only occasionally 
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lowered with the correct LBC, indicating a mixed influence from boundary and local 

region. 

 Similar to the definition of error doubling time (Lorenz 1969), an “error growth 

time” is defined as the time in which the initial error energy grows 2 orders of magnitude 

(from 1% to 100% initial error energy). Figure 2.9 plots the error growth time as a 

function of horizontal wavenumber. For l > 500 km, the error growth time exceeds 15 

days for KE and temperature, and ~10 days for humidity. The error growth rate rapidly 

increases as l decrease from 500 km to 100 km, for l < 100 km the error growth time is 

well below 6 hours. The precipitation error growth rate is much higher than other 

variables for the large and intermediate scales. However, its error growth rate increases 

more smoothly across scale, unlike other variables that have a rapid growth rate boost 

within a narrow scale band. 

2.6 Predictability of CCEWs at different scales 

 In the previous sections, the practical and intrinsic predictability limits are 

estimated for different model variables and for different spatial scales. To identify the 

underlying processes for the error growth at different spatial and temporal scales, a 

Wheeler-Kiladis space-time spectral analysis is conducted in this section to extract 

CCEWs from the simulation, and study the predictability associated with each wave 

mode. 

 Figure 2.10 shows the WK spectra for precipitation from the control simulation. 

Both the zonal wavenumber and time frequency axes are shown in log scale. The spatial 
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scale is again separated into large (L), intermediate (M), and small (S) scales similar to 

previous sections, the specified temporal and spatial scale windows for the CCEWs are 

indicated with black boxes. Along with the MJO signal, the Rossby (n = 1 ER), Kelvin, 

MRG, 2-day WIG (n = 1 WIG_L), and EIG (n = 0 EIG_L) waves all reside in the large 

scale. At intermediate scales, the n = 1 IG waves (WIG_M and EIG_M) with diurnal to 

semidiurnal period are the dominant wave modes. The small scale has no clearly 

identifiable wave signals. Precipitation signals related to small-scale moist convection 

spread throughout the small-scale spectrum, and according to the previous sections its 

predictability is intrinsically limited to < 1 day. 

 A space-time band-pass filter is applied to the precipitation field to extract each 

wave mode according to its period and wavelength window as shown in Fig. 2.10. Since 

the perturbed ensemble forecast is performed only for a shorter 15-day period, the control 

simulation is used to fill in the missing days before filtering. Figures 2.11a~e show 

longitude-time plots for the filtered precipitation associated with large-scale waves. 

Spaghetti plots of a selected precipitation contour (in black) among members from the 

first ensemble (100% error) are shown in Figs. 2.11f~j, and they are compared to the 1% 

error cases in Figs. 2.11k~o. For the ensemble with 100% error sampled from the 

ECMWF forecasts, the precipitation contours diverge and become out of phase. 

However, when the error energy is reduced to 1%, the contours remain in phase among 

members throughout the whole simulation. The same analysis is performed for the 

intermediate-scale IG waves and results are shown in Fig. 2.12. In contrast to large-scale 

wave results, the error reduction does not bring the contours in phase and large 

displacement errors still exist for intermediate-scale waves. These results agree with the 
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findings from previous section that the estimated large-scale predictability for 

precipitation can potentially be extended from 3 days to ~15 days if errors are reduced to 

1%, while for intermediate scales its predictability remains intrinsically limited (Fig. 2.7). 

 Table 2.1 list the averaged pattern correlations between perturbed and 

unperturbed simulations as a more quantitative measure of CCEW phase errors. A 

correlation of 1 indicates that two waves are perfectly in phase, while zero correlation 

indicates two waves completely out of phase. For precipitation, the large-scale CCEWs 

all show that a significant improvement in wave phase (from ~0.6 to ~0.8 correlation) is 

possible, which is contrasted by the intermediate-scale IG waves that stay out of phase 

(correlation < 0.3) even with reduced error. For other variables, results from the previous 

section show that the practical predictability for KE, temperature and humidity is much 

less limited than precipitation at large and intermediate scale. Therefore, the zonal wind, 

temperature and humidity phases associated with Rossby, Kelvin, and MRG waves can 

potentially be improved to almost perfect (correlation > 0.9) with reduced error. The 

intermediate-scale predictability for zonal wind, temperature and humidity is more 

limited, but less so than precipitation.  

2.7 Summary 

 In this study, the October 2011 MJO active phase is simulated using the WRF 

model with similar configuration as Wang et al. (2015). The control simulation is 

initialized with ERA-Interim data. The model faithfully reproduced most of the large-

scale features of the MJO and CCEWs. Twenty perturbed simulations are conducted for 



26 

the 15-day period from October 18 to November 2 to estimate the practical predictability 

of the multi-scale tropical weather. The IC and LBC perturbations are sampled from the 

ECMWF global ensemble forecasts from the TIGGE archive. Predictability limit is 

defined as the time in which error energy (ensemble variance) reaches/exceeds the 

reference energy (energy associated with the ensemble mean field). Intrinsic 

predictability is identified by another set of perturbed simulations with the IC and LBC 

error energy reduced to 1%. Two-dimensional spectral decomposition is applied to the 

error and reference energy to reveal the horizontal scale dependency in predictability. 

The predictability limits are calculated separately for kinetic energy, temperature, specific 

humidity, and precipitation at each scale. Findings from this study are summarized as 

follows. 

1) The practical predictability is scale- and variable-dependent. For large scale 

(l > 2000 km) horizontal winds and temperature, the practical predictability limit is 

~15 days; and for humidity the limit is ~8 days. The predictability rapidly drops 

across the intermediate scale (200 < l < 2000 km), and for small scales (l < 200 km) 

their practical predictability is limited to < 12 hours. Precipitation has more limited 

predictability than other variables, its large-scale practical predictability limit is only 

3 days and drops to < 12 hours for the smaller scales. 

2) Intrinsic predictability limits for horizontal winds, temperature and humidity are 

> 10 days for scales larger than 500 km. At these larger scales, the practical 

predictability horizon can be well extended by reducing errors in IC and LBC. 

However, for scales smaller than 500 km, the intrinsic predictability limit decreases, 

at < 100 km scales the limit is < 1 day, which is likely related to a shallower -5/3 
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power law in KE spectrum. For precipitation, a wider range of its smaller scales has 

intrinsically limited predictability comparing to other variables. 

3) Error growth rate is low at large scales and high at small scales, the increase takes 

place in a very narrow scale range (100 ~ 500 km) for horizontal winds, temperature 

and humidity. On the other hand, precipitation error growth rate increases more 

smoothly across scales. 

4) Large-scale CCEWs, i.e. Rossby, Kelvin, MRG and the 2-day IG waves, have a 

predictability that can be potentially improved by reducing the IC and LBC errors. 

With errors reduced to 1%, the zonal wind, temperature, and humidity associated 

with large-scale waves can be improved to almost perfectly in phase. However, for 

the intermediate scale, the diurnal and semidiurnal IG waves have a predictability 

that is more intrinsically limited. 
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Table 2.1. Averaged pattern correlation between member (perturbed run) and the control 

(unperturbed run) for zonal wind, temperature, specific humidity and precipitation 

associated with each CCEW mode. The improvement in pattern correlation from the 

100% error case to the 1% error case is indicated by an arrow. 

 

CCEW mode zonal wind temperature specific humidity precipitation 

Rossby 0.84 → 0.99 0.85 → 0.99 0.72 → 0.97 0.75 →	0.88 

Kelvin 0.77 → 0.97 0.82 → 0.97 0.67 → 0.92 0.65 → 0.85 

MRG 0.75 → 0.95 0.64 → 0.94 0.65 → 0.94 0.64 → 0.86 

WIG_L 0.51 → 0.86 0.51 → 0.86 0.46 → 0.81 0.45 → 0.74 

EIG_L 0.51 → 0.85 0.64 → 0.92 0.49 → 0.83 0.46 → 0.70 

WIG_M 0.27 → 0.43 0.38 → 0.50 0.27 → 0.44 0.17 → 0.28 

EIG_M 0.16 → 0.27 0.33 → 0.45 0.17 → 0.32 0.09 → 0.17 
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Figure 2.1 Horizontal maps of 5-day accumulated precipitation (mm) on October 20 

(a, d), October 28 (b, e), and November 5 (c, f). The results are compared between 

(a)-(c) TRMM observation and (d)-(f) WRF control simulation. 
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Figure 2.2. Longitude-time plots of 850-hPa zonal wind (color shadings from -20 to 

20  m s-1) and precipitation (black contours of 15 mm day-1) averaged over 5°S-5°N. 

The results are compared between (a) TRMM precipitation, ERA-Interim zonal wind, 

and (b) WRF control simulation. The white grid and numbers to the right indicate the 

observed phase of the Oct 2011 MJO (according to Fig. 6 from Johnson and 

Ciesielski 2013). The precipitation and wind fields are plotted at 3-h intervals, except 

for ERA wind that is at 6-h intervals. 
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Figure 2.3. Wheeler-Kiladis space-time spectra of precipitation from (a, b) TRMM 

observation and (c, d) WRF control simulation averaged over 15°S-15°N that is (a, c) 

symmetric and (b, d) anti-symmetric about the equator. Signal strengths from 1.1 to 2 

are shown in shadings. The solid curves correspond to dispersion relations for dry 

equatorial waves with equivalent depths of 15 m. The zonal wavenumber and time 

frequency are labelled with corresponding zonal wavelength and time period, 

respectively, positive (negative) wavelength indicates eastward (westward) 

propagating signals. 
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Figure 2.4. Longitude-time plot of RM-DTE (m s-1, shadings) at 850 hPa and the 

precipitation from control simulation (black contour of 15 mm day-1) averaged over 

5°S-5°N. The RM-DTE is the square root of ensemble-averaged DTE between the 

perturbed ensemble simulations and the control simulation from October 18 to 

November 2 (shown as t = 0 to 15 days). 
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Figure 2.5. Reference energy spectra, R(k), averaged over the 15 days (black lines) and 

error energy spectra, E(k) (color-coded with simulation time t = 0 to 15 days), for (a) 

kinetic energy, (b) temperature, (c) specific humidity, and (d) precipitation. The 

shown spectrum is averaged over the vertical levels. 
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Figure 2.6. Time series of spectral energy averaged at large (L; l > 2000 km, black), 

intermediate (M; 200 < l < 2000 km, blue), and small (S; l < 200 km, red) scales for 

(a) kinetic energy, (b) temperature, (c) specific humidity, and (d) precipitation. The 

thick lines show the error energy, while thin lines show the reference energy. 
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Figure 2.7. Predictability limits for kinetic energy (black), temperature (blue), specific 

humidity (red), and precipitation (green) plotted as a function of zonal wavenumber 

(labeled as wavelength). Thick (thin) lines are practical (intrinsic) predictability 

limits. The limits are defined as the time it takes for the error energy (100% error for 

practical limit and 1% error for intrinsic limit) to reach reference energy. The limits 

are calculated for each member and the ensemble average is plotted. Smoothing is 

applied across wavelength to remove some noise for better visualization. 

  



36 

 

Figure 2.8. Time series of spectral error energy integrated within L (a, d), M (b, e), and S 

(c, f) scales for (a)-(c) kinetic energy and (d)-(f) precipitation. The reference error 

energy is shown as black lines, the blue (red) lines show the error energy from the 

100% (1%) error case, and the gray lines show the case with errors only in the initial 

condition. 
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Figure 2.9. Error growth time (days) plotted as a function of zonal wavenumber (labeled 

as wavelength) for kinetic energy (black), temperature (blue), specific humidity (red), 

and precipitation (green). The error growth time is defined as the time it takes for 1% 

initial error to grow and reach the 100% initial error. The growth time is calculated 

for each member and the ensemble average is plotted. 
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Figure 2.10. Similar to Figs. 2.3c and 2.3d, but with zonal wavenumber and time 

frequency shown both in log scale. Space-time filtering windows are shown as black 

boxes for equatorial Rossby wave (ER), Kelvin wave, mixed-Rossby-gravity wave 

(MRG), n = 1 WIG wave at intermediate scale (WIG_M) and at large scale (WIG_L), 

n = 0 EIG at large scale (EIG_L) and n = 1 EIG at intermediate scale (EIG_M).  
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Figure 2.11. Longitude-time plots (a)-(e) of precipitation (color shadings from -10 to 10 

mm day-1 every 1 mm day-1, zero shown in white) filtered for (a) Rossby, (b) Kelvin, 

(c) MRG, (d) WIG_L, and (e) EIG_L waves and averaged over 0-5°N. The second 

row (f)-(j) shows spaghetti plots of the contours highlighted in black in the first row, 

each color corresponds to a member from the perturbed ensemble simulation (100% 

error case). The third row (k)-(o) is similar to the second row but showing the 

ensemble simulation with error energy reduced to 1%. 
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Figure 2.12. Similar to Fig. 2.11 but showing the two intermediate-scale waves, WIG_M 

and EIG_M. Only 5 members are shown in the spaghetti plots, and the longitude-time 

plots are zoomed in on 60°-80°E and the first 5 days of the simulation. 
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Chapter 3  

 

Potentials in improving predictability of multiscale tropical weather 

systems evaluated through ensemble assimilation of simulated satellite-

based observations 

3.1 Introduction  

Skillful modeling of the multiscale tropical weather systems is an important and 

challenging task for global numerical weather prediction. Lorenz (1963) first discovered 

that the atmospheric flow can be intrinsically unpredictable due to its chaotic nature even 

with near-perfect model and initial/boundary condition. Moist convective processes are 

identified as responsible for the intrinsic limit of predictability for moist baroclinic waves 

(Zhang et al. 2003, 2007; Sun and Zhang 2016), mesoscale convective systems (Bei and 

Zhang 2007; Melhauser and Zhang 2012; Selz and Craig 2015; Zhang et al. 2016), and 

tropical cyclones (Zhang and Sippel 2009; Tao and Zhang 2015). CCEWs are also 

susceptible to the moist convective processes that will limit their predictability. Despite 

such intrinsic limits in predictability, there is still room for improvement in the current 

prediction skill by assimilating better observations and improving the models. For 

example, Reynolds et al. (1994) found that the then-operational global prediction system 

has deficiencies in the tropics that lead to large error growth, although the internal error 

growth rate is actually slower in the tropics than in mid-latitudes. 
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 Due to the lack of in-situ soundings with high resolution and good coverage, the 

tropics heavily rely on satellite remote sensing to provide observations for forecast 

systems. In this chapter, we evaluate the potentials in improving the predictability of 

tropical weather at different scales through assimilating current and future satellite 

observing networks. To the best of our knowledge, this study is the first satellite data 

assimilation experiment focusing on multiscale tropical weather systems beyond tropical 

cyclones. The MJO active phase simulation from the previous chapter is used as a test 

case, and an idealized Observing System Simulation Experiment (OSSE) is conducted 

under the assumption of perfect dynamic model and perfect observation error models 

used in data assimilation. For observing networks with different spatial density, several 

studies suggest that a shorter localization distance is required for denser observations to 

achieve better analyses (Dong et al. 2011; Kirchgessner et al. 2014; Periáñez et al. 2014). 

In this study, the localization for each observing network is manually tuned to allow a 

relatively fair comparison of their impact.  

 This chapter is organized as follows. Section 3.2 describes the dynamic model, 

test case, and data assimilation method. Section 3.3 provides details of the satellite 

observing networks under investigation. The following sections will discuss results 

regarding scale- and variable-dependent predictability (section 3.4), the relative 

contribution from each observing network (section 3.5), and the specific improvement 

found for each CCEW (section 3.6). Section 3.7 will summarize the findings from this 

study. 
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3.2 Experimental design 

3.2.1 The verifying truth simulation 

 A similar configuration of the Weather Research and Forecasting (WRF) model is 

adapted from the previous chapter to conduct a month-long simulation from 12 October 

to 12 November 2011. The model domain contains 777×444 horizontal grid points with 9 

km spacing, and has 45 vertical levels with 9 in the lowest 1 km and a model top at 20 

hPa. Cloud microphysics processes are represented by the WRF Double-Moment 6-class 

(WDM6) scheme (Lim and Hong 2010). No cumulus parameterization is used, and 

organized convections are explicitly represented by the 9-km model grid. Shortwave and 

longwave radiative processes are simulated using the New Goddard (Chou and Suarez 

1999) and RRTMG (Iacono et al. 2008) schemes, respectively. Surface processes are 

simulated using the unified Noah land surface model (Chen and Dudhia 2001) with 

variable surface skin temperature (Zeng and Beljaars 2005). Subgrid-scale turbulent 

mixing is treated with the Yonsei University (YSU) boundary layer scheme (Hong et al. 

2006). The initial conditions (IC) and lateral boundary conditions (LBC) are specified by 

the ERA-Interim reanalysis data (Dee et al. 2011). The sea surface temperature (SST) for 

the lower boundary conditions is updated every 6 h according to the National Centers for 

Environmental Prediction (NCEP) Final Operational Global Analysis (FNL data). 

 Figure 3.1 shows the computation domain that covers the precipitation associated 

with the active MJO phase. The simulation successfully captures the slow eastward 

propagation of the active phase as well as most of the CCEW modes. Figure 3.2 shows 

the Wheeler and Kiladis (1999) space-time spectra for surface precipitation and 850-hPa 
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zonal wind. For precipitation, the dominant signals are the MJO, Kelvin and westward-

propagating IG (WIG) waves. The WIG waves contain a hierarchy of spatial and 

temporal scales. For spatial scales larger than 2000 km, there is the “2-day wave”, while 

the diurnal and semi-diurnal waves have wavelengths slightly shorter than 2000 km. The 

Kelvin wave has a precipitation signal at a shorter wavelength than the wind signal. It is 

also evident that the propagation speed of the convectively coupled Kelvin wave is 

slower than the dry Kelvin waves. For ER and MRG waves, the precipitation signal is 

relatively weaker than their wind signal. The precipitation signal for ER wave also has a 

shorter wavelength than the wind signal, similar to the Kelvin waves. The signals related 

to eastward propagating IG waves are not as strong as their westward-propagating 

counterparts. 

 Due to the limitation of computation resources, the OSSE is conducted in a 

smaller domain with 378×222 grid points (10°S to 10°N, 55° to 90°E) during the 17-day 

period from 16 October to 2 November (phase 1 to 3 of the MJO). The location of this 

OSSE domain is shown in Fig. 3.1. The month-long large-domain simulation provides IC 

and LBC for the smaller OSSE domain. The OSSE domain has the same 45 vertical 

levels and 9-km grid spacing as the larger domain. 

 To extract a certain CCEW mode, a space-time band-pass filter is applied to the 

month-long large-domain model simulation. Table 3.1 lists the filter parameters for each 

CCEW. Figure 3.3 shows the filtered surface precipitation and 850-hPa zonal wind 

during the 17-day test period and within the OSSE domain. Hereafter, the time from 16 

October to 2 November will be labeled as day 1 to 18. During the test period, the MJO 

precipitation signal slowly propagates across the entire OSSE domain from west to east. 
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The low-level westerly wind anomaly is trailing the precipitation peak. The ER wave 

features two strong westerly wind signals associated with the cyclonic Rossby gyres 

within the test domain and replaced by easterlies (anti-cyclonic gyre) later into the test 

period. The Kelvin wave has three successive phases propagating across the test domain 

during the 17 days, each one progresses more to the east due to modulation from the 

MJO. MRG waves have a strong wind signal but very weak precipitation signal during 

the test period. WIG waves consist of a wide range of spatial and temporal scales. Large-

scale (>1000 km) WIG signals have a life cycle of about 2 days and propagate across the 

whole test domain, while intermediate-scale (500-2000 km) WIG signals are more 

transient in space and time. Both types of WIG waves appear to be modulated by the 

MJO envelope as well. 

3.2.2 Data assimilation method: EnKF 

 The PSU WRF EnKF (Meng and Zhang 2008) is employed as data assimilation 

method. The EnKF utilizes an ensemble of model realizations to estimate flow-dependent 

error covariance, which is an approximation of the extended Kalman filter (Evensen 

1994). The ensemble perturbations around the mean are updated with the square root 

algorithm from Whitaker and Hamill (2002). Covariance relaxation-to-prior-perturbation 

(Zhang et al. 2004) with 𝛼  = 0.8 inflates the ensemble variance to prevent filter 

divergence. Covariance localization is applied with the Gaspari and Cohn (1999) tapering 

function to remedy sampling noises in error covariance. 

 The OSSE is conducted under a perfect-model assumption, i.e. the forecast model 

and LBC are the same from the truth simulation. An ensemble of 60 members is created 



46 

one day before the data assimilation cycle begins. The initial ensemble perturbations are 

randomly sampled from the climatological error covariance matrix created by the NMC 

method (Parrish and Derber 1992). The ensemble mean is created by adding another 

perturbation to the truth. This perturbation is drawn from the same error covariance but 

made sure that its magnitude is close to the ensemble spread. The initial ensemble is run 

forward for one day to develop flow-dependent error covariance. 

 Synthetic observations are created by randomly perturbing the observed variable 

simulated from the truth with prescribed observation error. The perfect forward operator 

is used, and the correct observation errors matching the uncertainties in synthetic 

observations are specified in EnKF. The prescribed observation errors are unbiased and 

uncorrelated in this OSSE study. Table 3.2 lists the prescribed observation error and 

resolution for each observing network, which will be discussed in more details in next 

section. Table 3.3 provides a succinct list of experiments conducted in this paper. NoDA 

is a free ensemble run from the perturbed initial ensemble. CNTL is a benchmark case 

assimilating ATOVS temperature (T) and specific humidity (Q) profiles and AMV winds. 

The observations are assimilated every 3 h during the 17-day test period, which results in 

136 data assimilation cycles in total. We will show that the EnKF spin-up period appears 

to be shorter than 4 days, therefore some of the sensitivity experiments are only 

conducted for the first 9 days. The localization cutoff distance, i.e. the radius of influence 

(ROI), is specified separately for each observing network in consideration of the 

respective observation density. A larger ROI is used for sparser networks, and some 

manual tuning with a few cycles are performed to reach a reasonable ROI. A sensitivity 

experiment that doubles the horizontal ROI in CNTL confirmed that the resulting change 
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in analysis error is minor. As pointed out by Zhen and Zhang (2014) and Lei and 

Whitaker (2017), the analysis sensitivity to localization is minor when approaching the 

best-performing ROI. Thus, we will not further discuss how the exact choice of ROI 

changes analysis accuracy in this paper. 

3.3 Observing networks 

3.3.1 Synthetic ATOVS retrieval products 

 The Advanced TIROS Operational Vertical Sounder (ATOVS) is a collection of 

polar-orbiting satellite instruments that are designed to sample the atmospheric T and Q 

at different vertical levels. These instruments currently include the High-Resolution 

Infrared Sounder (HIRS), the Advanced Microwave Sounding Unit-A (AMSU-A) and 

Microwave Humidity Sounder (MHS) on board NOAA-19, MetOp-A and MetOp-B 

satellites. Operational centers routinely produce atmospheric sounding products from the 

ATOVS instruments using sophisticated retrieval methods (Reale 2001), typically 

including cloud detection, radiative transfer, and other physical process-based algorithms. 

The T and Q profiles can be retrieved for both clear and cloudy atmospheric conditions. 

Although direct assimilation of ATOVS radiances may yield more realistic results, 

current regional-scale data assimilation systems (including the one employed here) 

cannot effectively and simultaneously assimilate all the ATOVS radiances, especially for 

cloud-affected microwave-channel radiances that are extremely sensitive to 

parameterizations in model microphysical processes and related representations of 

scattering properties. Therefore, we assimilate synthetic retrieved T and Q profiles with 
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regular spatiotemporal resolutions to evaluate the impact from these ATOVS radiances 

(similar to English et al. 2000), which also serves a baseline for other observing systems.  

 The spatial and temporal resolution of ATOVS profiles depend on both the 

availability of satellite instruments and the level of quality control during retrieval. The 

current profiles have a horizontal spacing of about 40 km. In the vertical, there are 40 

layers from surface up to 0.1 hPa for T profiles, and 17 layers from surface up to 200 hPa 

for Q profiles. Miyoshi et al. (2013) demonstrated how non-orthogonal observation 

operators reduce the available information from observations. Due to the overlapping of 

weighting functions of radiances used in the retrieval process, the number of independent 

pieces of information from real ATOVS profiles is likely to be less that what assumed in 

this study, the impact of which will be examined with sensitivity experiments through 

reducing the information content in either the horizontal and/or vertical directions, and in 

time. The horizontal spacing is set to a coarser 90 km to account for missing data due to 

gaps between swaths and/or quality control processes. The current three-satellite 

constellation could sample the whole tropics 6 times every day. This observation interval 

can be shortened with an increase in number of participating satellites in the 

constellation. Since year 2015, with the launch of the Global Precipitation Measurement 

(GPM) mission (Hou et al. 2014), it has been estimated that there are enough satellites to 

achieve an average revisiting time of 1.5 h. Therefore a 3 h cycling period is reasonable 

for ATOVS in this study. Figure 3.4a shows the vertical profile of prescribed ATOVS 

observation errors in solid lines. Li et al. (2000) validated the ATOVS retrievals with 

respect to radiosonde observations, and found the accuracy of retrieved T is about 2 K 

and dewpoint temperature is 3-6 K (about 30% error in Q). The horizontal distribution of 
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ATOVS profiles is shown as black dots in Fig. 3.4b. The horizontal localization radius 

(ROI) is set to 400 km. The vertical ROI is set to 5 levels, which correspond to ~500 m 

near surface and increases to ~3000 m near tropopause. 

3.3.2 Synthetic GPSRO observations 

 The Global Positioning System Radio Occultation (GPSRO) samples the 

atmosphere with limb radio signals transmitted by the GPS satellites and received by 

low-Earth-orbit (LEO) satellites. Atmospheric T and Q can be retrieved from the 

refraction of GPS signals. Since radio signals are not influenced by particulates, the 

retrieval can be performed for both clear and cloudy weather conditions. The limb 

sounding geometry provides a higher vertical resolution than the passive nadir sounders 

(Kursinski et al. 1997; Yunck et al. 2009). The achievable vertical spacing is ~100 m for 

the low troposphere and reduce to 1 km into stratosphere for both temperature and 

humidity. The horizontal density of retrieved profiles depends on the number of LEO 

satellites in operation. For the second Constellation Observation System for Meteorology, 

Ionosphere and Climate (COSMIC2) mission (Cook et al. 2011), 12 LEO satellites will 

be launched that provide more than 8000 profiles globally within a 3 h window. The 

retrieval products also have better accuracy than ATOVS. Wang et al. (2013) validated 

the GPSRO profiles with global radiosondes and found that T error is 1.72 K and Q error 

is 0.67 g kg-1. Figure 3.4a shows the GPSRO error profiles as dashed lines in comparison 

to ATOVS error profiles.  

 In this study, synthetic GPSRO profile location is randomly specified. At 

COSMIC2 density, there are about 20 profiles in the OSSE domain. A much higher 
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horizontal density may be achieved with the future launch of CubeSat (Mannucci et al. 

2010). Assuming a 300-satellite CubeSat constellation, there will be 25 times more 

profiles in the domain. Figure 3.4b compares the horizontal distribution of GPSRO at 

COSMIC2 and CubeSat density to the ATOVS profile grid. The horizontal ROI is set to 

1600 km for GPSRO profiles at COSMIC2 density, while a shorter 400 km is used for 

denser CubeSat GPSRO profiles. Vertical ROI is set to 5 levels, the same as for the 

ATOVS profiles.  

 To compare the assimilation of retrieved T and Q profiles with the direct 

assimilation of refractivity (N) data, synthetic N profiles are generated at the same 

location of the T and Q profiles according to the following equation (Smith and 

Weintraub 1953). 

𝑁 = 77.6
𝑝
𝑇 + 3.73×10

O 𝑒
𝑇9 

,    (3.1) 

where p is pressure, T is temperature and e is water vapor pressure. According to 

Kursinski et al. (1997), the observation errors for N is ~0.2% above 500 hPa and 

increases to ~1% at lower levels. Since the observation operator is nonlinear, a shorter 

localization distance is specified. The horizontal ROI is 600 km for coarser network and 

200 km for denser network. Vertical ROI is set to 3 levels.  

3.3.3 Synthetic AMV wind 

 The Atmospheric Motion Vector (AMV) is derived from a sequence of 

geostationary satellite images by tracking features such as cloud edges and water vapor 
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gradients (Nieman et al. 1997). A cross-correlation tracking algorithm locates sharp 

gradients in raw satellite images, and their displacement vectors are retrieved as wind 

observations. Heights are assigned to each AMV according to its observed brightness 

temperature. Operational centers now produce routine AMV wind products from the 

Geostationary Operational Environment Satellite (GOES) images. NCEP GFS assimilates 

AMVs in real time every 6 h with relatively strict quality control processes. CIMSS 

prepares hourly AMV products with more detailed coverage over tropical regions 

(Velden et al. 1997). A “rapid scan” mode can be switched on to achieve even higher 

temporal frequency (every 15 minutes). Velden and Bedka (2009) performed a careful 

comparison of large volumes of AMV data with collocated rawinsonde wind profiles, and 

estimated that AMV observation errors are about 5 m s-1 and the height assignment is the 

dominant error source (up to 70%).  

 To generate synthetic AMV observations, instead of simulating the cloud 

detection and tracking algorithms, the real AMV observation locations from GTS dataset 

are directly used to interpolate wind from truth simulation. Such treatment does not 

guarantee the synthetic AMVs to be located at the simulated clouds, especially for cloud 

features at smaller scales. The AMVs collocated with real data may be located in the 

simulated clear-air regions. At small scales, such biased coverage will introduce flow 

dependence in results, and the results may be different from a real-case scenario. 

However, for larger scales, the results are less influenced since simulated cloud clusters 

agrees well with observations. More important is that such procedure yields synthetic 

AMVs that match the spatial resolution and distribution of the current real-world data. 

Figure 3.4c shows the number of AMVs at each vertical layer. Most of the AMVs are 
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located at upper levels (~200 hPa), and only a small fraction is at low levels (~750 hPa). 

At upper levels, the number of AMVs is comparable to ATOVS profiles (~800). 

Figure 3.4d shows the horizontal distribution of AMVs. The horizontal ROI is set to 400 

km. The vertical coverage is limited to where the cloud or vapor gradient is located, 

therefore a larger vertical ROI of 15 model levels is used. 

3.3.4 Synthetic Meteosat-7 infrared brightness temperature 

 Among the first-generation geostationary satellites, Meteosat-7 (Met7) has 

coverage to the Indian Ocean. It provides full-disk brightness temperature (Tb) every 30 

minutes from two infrared channels and a visible channel. The horizontal observation 

spacing is 5 km. Starting from 2017, Met7 will be replaced by the second-generation 

Meteosat-8, which has more channels and increased resolution (similar to GOES-R that 

achieves a spatial grid spacing of 2 km every 15 minutes). Although clear-air satellite Tb 

is routinely assimilated in operational centers, the direct assimilation of cloud-affected Tb 

is still quite challenging. Recent development in methods that remedy the non-Gaussian 

observation errors makes the assimilation of all-sky Tb much more effective (Geer and 

Bauer 2011; Tavolato and Isaksen 2015; Zhang et al. 2016; Minamide and Zhang 2017). 

The Tb from infrared channels are easier to assimilate than those from microwave 

channels thanks to less sensitivity to scattering processes that are not well represented in 

current microphysics schemes and radiative transfer models. In this study, the water 

vapor band Tb (channel 3) is assimilated directly using the CRTM as forward operator. 

The thermal infrared window (channel 2) is preserved for verification purposes. The 

Adaptive Observation Error Inflation (AOEI; Minamide and Zhang 2017) is applied to 
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reduce the negative effect from clear/cloudy-air representativeness errors. Horizontal ROI 

is set to 30 km. The vertical height of a Tb observation is specified according to its 

cloudy/clear air condition. A cloudy Tb is assigned to 250 hPa and a clear-air Tb to 400 

hPa (peaks of their weighting function). The vertical ROI is set to 25 levels around the Tb 

observation at its specified height so that the localization function is similar to its 

weighting function. 

3.3.5 Synthetic CYGNSS surface wind speed 

 The Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of 

8 micro-satellites that receive both direct and reflected signals from GPS satellites (Ruf et 

al. 2016). The direct signals pinpoint the location of a CYGNSS observation, and the 

reflected signals carries information of the roughness of ocean surface, from which wind 

speed is retrieved. The relatively low inclination orbits of the microsatellites are designed 

to provide excellent coverage for the tropics. The observation footprint is 25 km wide 

with a mean and median revisit time of 7.2 and 2.8 h, respectively. The observation error 

is about 2 m s-1 or 10% for a wide dynamic range of wind speed. The synthetic CYGNSS 

observation is generated at 45 km grid spacing every 3 h. Instead of locating the 

observations along the realistic orbits that are horizontally inhomogeneous, a slightly 

coarser uniform grid is used for simplicity. The CYGNSS observation grid is shown as 

black dots in Fig. 3.4d. The horizontal ROI is set to 200 km for the CYGNSS observation 

and their vertical ROI is 15 model levels from surface up to ~700 hPa.   
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3.4 Scale- and variable-dependent improvements in prediction skill 

 In this subsection, the benchmark CNTL experiment is compared to NoDA to 

evaluate the impact from assimilating synthetic ATOVS and AMV observations. First, to 

assess the EnKF performance in CNTL, the two-dimensional spectra of error in prior 

ensemble mean are compared to the ensemble spread in Fig. 3.5. For most variable and 

scales, the ensemble spread well represents the prior error, and no filter divergence 

occurred. Figure 3.5 also shows the spectra from the CNTL prior ensemble mean and 

truth signals as references. The two reference spectra match at the large scales, however, 

the ensemble mean spectral power are lower than the truth at smaller scales. This drop in 

spectral power is due to the smoothing of small-scale features that are dislocated among 

the members, which to a certain extent reflects the more limited predictability for small 

scales, where error grows and displacing these features at a higher rate than the data 

assimilation cycles can constrain. In chapter 2, the predictability limits are characterized 

by comparing the ensemble spread spectra to the ensemble mean reference spectra. Going 

from large to small scales, at a given time the ensemble spread reaches and exceeds the 

signal level from the reference (signal-to-noise ratio smaller than 1), indicating loss of 

predictability. Notice that hydrometeors and vertical motion (w) reach predictability 

limits at larger scales than temperature (T), specific humidity (Q) and winds. At even 

smaller scales, when signal-to-noise ratio is dropped significantly below 1, the error 

spectra match the truth signal (error saturation). Scales smaller than 200 km appear to 

have saturated hydrometeor and w errors and wind, T, Q errors approaching their 

predictability limits at 3 h in the prior ensemble. Therefore, the following diagnostics will 
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filter out these smaller scales for a clearer demonstration of observation impact. For the 

sake of simplicity, “NoDA” will refer to NoDA ensemble mean and “CNTL” to CNTL 

posterior ensemble mean hereafter. 

 Figure 3.6 compares the longitude-time plots of surface precipitation from NoDA 

and CNTL to the truth. The NoDA mean precipitation signal is much weaker than the 

truth, although it still captures the precipitation events around day 6, 11, and 14-17. On 

the other hand, the CNTL analysis precipitation better agrees with the truth than NoDA. 

The amplitude, location, timing, and propagation of the precipitation signals are much 

improved by assimilating the observations. Snapshots of low-level horizontal wind and 

relative humidity fields from NoDA and CNTL just prior to the precipitation event at day 

6 are compared to the truth in Fig. 3.7. The truth low-level flow forms a convergence line 

and an anti-cyclonic shear around the precipitation and a cyclonic gyre is located 

northeast to the precipitation. Although NoDA has the perfect lateral boundary conditions 

by the current OSSE design, the convergence line and precipitation peaks are almost 

missing by the ensemble simulation without data assimilation. EnKF assimilation of 

satellite observations in CNTL recovers the flow pattern, although the location of 

precipitation is still slightly but noticeably different from the truth. Similarly, CNTL has 

a better representation of atmospheric moisture near the line of precipitation than NoDA 

as shown from the relative humidity fields. Note that CNTL has a weaker precipitation 

signal due to the averaging among members that have precipitation at different locations. 

Although small-scale signals (l < 200 km) are filtered out, this effect is still present. 

 Figure 3.8 shows time series of the domain-averaged root mean square errors 

(RMSEs) with respect to the truth from NoDA, CNTL and the forecasts from CNTL. 
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Zonal wind (u) and meridional wind (v) errors are combined and shown as root-mean 

difference kinetic energy (RM-DKE). Difference kinetic energy (Zhang et al. 2002) is 

defined as (𝑢?9 + 𝑣?9)/2, where u’ and v’ are the errors in u and v, respectively. The 

forecasts are used to evaluate how long in time the prediction skill can be retained. The 

posterior ensemble mean is lack of small-scale signals, which is unrealistic and not 

necessarily in physical balance. Therefore, an ensemble forecast is required. Schwartz et 

al. (2014) suggested that subensembles of 20-30 members will have comparable forecast 

skills with a full 50-member ensemble. In this study, a small 10-member ensemble 

forecast is performed, and forecast errors are calculated from the mean of ensemble 

forecasts. The directly observed variables (u, v, T, and Q) all show evident error reduction 

in CNTL from NoDA. The hydrometeor mixing ratios and w are also improved slightly 

from the better flow pattern and thermodynamic structures. The horizontal wind, T, Q 

forecast errors grow linearly for the first day and more flow-dependent afterwards as 

errors approach the NoDA level. Hydrometeor and w error growth is flow-dependent 

almost right from the beginning. The apparent error peaks at day 6, 11, and 14-17 are 

associated with the precipitation episodes. 

 Figure 3.9 shows vertical error profiles from NoDA, CNTL, and the forecasts and 

Fig. 3.10 shows their spectra. The forecast errors at certain lead times are averaged over 

10 forecast runs during the test period (5 forecasts starting from 00 UTC on day 5, 7, …, 

13, and 5 forecasts starting 12 UTC). Errors peak at different vertical levels for each 

variable. Horizontal wind, w, T, and solid hydrometeor (ice, snow and graupel) errors 

have peaks at upper levels that associate with cloud tops. Deep convective clouds are 

likely responsible for the liquid hydrometeor (rain and cloud) errors at mid-level, while 
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shallow low-level clouds likely induce errors in horizontal wind, T, and Q around 900 

hPa. Their spectral error distribution confirms that improvement from NoDA to CNTL is 

mostly at scales larger than 200 km. The forecast errors saturate faster for smaller scales. 

For 200-500 km scales, error saturates after 2 days; for scales larger than 1000 km, errors 

have not reached saturation after 4 days. The hydrometeors and w have faster small-scale 

error growth than other variables. These scale- and variable-dependent forecast error 

growth is consistent with the findings from Bei and Zhang (2014) and chapter 2. 

3.5 Relative impact from different observing networks 

 The +Met7 experiment assimilates Met7 channel-3 Tb in addition to CNTL. 

Figures 3.11a-d shows a snapshot of its resulting channel-2 Tb as an independent 

verification in comparison to other experiments. In CNTL, the assimilation of ATOVS 

and AMV recovers the large-scale precipitating cloud cluster from NoDA already. 

However, its small-scale details of convective clouds are still erroneous comparing to the 

truth. The +Met7 result has a better agreement with the truth for the location and strength 

of cloud clusters (low Tb) than CNTL. The horizontal distribution of ice, snow and 

graupel, to which infrared Tb is most sensitive, are shown in Figs. 3.11e-h. Although not 

perfect comparing to the truth, the +Met7 hydrometeors are improved over CNTL.  

 The +CYGNSS experiment assimilates CYGNSS wind speed in addition to 

CNTL, and another experiment NoProfile assimilates both Met7-Tb and CYGNSS in 

addition to CNTL but excludes ATOVS profiles. Figure 3.12 plots the error time series, 

vertical profiles, and spectra from these experiments for comparison. The +Met7 can 
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effectively reduce errors in ice, snow, and graupel mixing ratios (Fig. 3.12d), but not so 

much for rain and cloud (not shown). Horizontal wind, T, and Q are also slightly 

improved by assimilating Met7-Tb. Since Met7-Tb has a much higher horizontal 

resolution than ATOVS profiles, it can potentially improve the predictability for scales 

smaller than 200 km. The summed error spectra of solid hydrometeors (Fig. 3.12l) show 

that +Met7 indeed reduces error at small scales. However, in this study, the 3 h cycling 

period is too long to constrain errors at these scales before their saturation. Potentially, 

assimilating Met7-Tb at hourly intervals and with a higher resolution model will better 

utilize its positive impact. The single channel Tb assimilated is also not providing 

sufficient vertical profile information. Comparing NoProfile to CNTL, it is evident that 

ATOVS profiles better constrains horizontal wind, T, and Q. The ATOVS profiles 

combines the information from multiple satellite Tb images that are sensitive to different 

vertical heights, effectively having better vertical resolution than a single-channel Tb. 

The future development in all-sky infrared and microwave Tb assimilation will allow a 

fairer comparison between direct Tb assimilation and assimilating retrieved profiles. In 

addition to AMV wind, CYGNSS observations provide extra wind information for the 

lowest levels, reducing horizontal wind, T, and Q errors from surface up to 850 hPa. This 

improvement is mostly found for larger scales due to its moderate resolution. In 

NoProfile, the denial of ATOVS profiles causes a larger error in mid-level horizontal 

winds, however, their errors at upper and low levels remain small with the assimilation of 

AMV and CYGNSS (Fig. 3.12e). 

 To further test the sensitivity to resolution of the retrieval T and Q profiles from 

either ATOVS or GPSRO, several additional experiments are conducted assimilating 
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retrieved profiles in addition to NoProfile. +ATOVS assimilates the ATOVS profiles at 

their current resolution, while +ATOVScoarse assimilates them with temporal and 

horizontal resolution reduced by half. +GPSRO assimilates GPSRO profiles at 

COSMIC2 resolution, while +GPSROdense assimilates a denser version from the 

hypothetical populated CubeSat constellation. Note that the localization distance is 

increased for coarse networks according to the increase in observation intervals. 

Figure 3.13 compares their resulting error time series, vertical profiles and spectra. When 

reduced-resolution ATOVS profiles are assimilated, their impact is also reduced for all 

variables and scales. The COSMIC2 GPSRO profiles bring an impact that is approaching 

but from time to time less than the reduced-resolution ATOVS profiles. The random 

location of these profiles is a disadvantage over the uniformly spaced ATOVS profiles in 

continuous sampling of convective systems of interest. This issue is likely resolved with 

an increase in observation density. As shown in +GPSROdense, the CubeSat 

constellation with 25 times more data will yield a retrieval product dense enough to 

surpass the performance of the current network of ATOVS profiles. 

 In +ATOVS, the ATOVS profiles are assumed to have ~40 independent pieces of 

information for T in the vertical, which likely overestimates the information content and 

may yield an analysis that is too optimistic. To at least partially address this concern, two 

additional experiments are conducted. +ATOVSthinV assimilates ATOVS profiles with 

vertical levels thinned to 10 levels for T and 4 levels for Q, and +ATOVSerror1.5 

assimilates ATOVS profiles with vertical resolution unchanged but errors for both T and 

Q inflated to 150%. Note that for +ATOVSthinV, the vertical ROI is enlarged to 20 

levels as the observations are thinned in the vertical. Figure 3.14 shows that reduction in 
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vertical resolution/accuracy does not considerably degrade the analysis accuracy. The 

increase in analysis error in these experiments is much smaller comparing to 

+ATOVScoarse with reduced horizontal and temporal resolutions. This also indicates 

that the vertical information content estimated to contain ~10 independent pieces of 

information is likely able to capture the key vertical modes in the tropics. 

 Figure 3.15 compares the direct assimilation of GPSRO N profiles (+GPSRON 

and +GPSROdenseN) with assimilation of retrieved T and Q profiles (+GPSRO and 

+GPSROdense). The overall analysis error is similar for both assimilation strategies. The 

nonlinear observation operator results in a shorter decorrelation length scale, which 

requires the localization distance to be shorter to achieve similar performance. The 

nonlinearity also causes longer filter spin-up period for Q (Fig. 3.15c), and cause the 

analysis for T and winds to be less accurate than those from assimilating retrieved 

profiles (Figs. 3.15a and 3.15b). Since our idealized experiment assumes no errors in the 

retrieval process and error correlation and bias are not considered, the performance of 

assimilating retrieval profiles is an optimistic expectation comparing to real-data cases. 

3.6 Observation impact on CCEWs 

 The same space-time band-pass filter from section 2 is applied to posterior 

ensemble mean to evaluate the observation impact for each CCEW mode. The posterior 

mean fields lack the spatial and temporal coverage to directly filter for large-scale waves, 

thus the month-long large-domain truth simulation is used to fill in the gaps before 

applying the band-pass filter. Figure 3.16 plots the longitude-time diagrams of the 
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filtered 850-hPa zonal wind from NoDA and CNTL and compares them to the truth, and 

Table 3.4 quantifies these errors. Two error sources can lead to a large RMSE, the waves 

being out of phase with the truth and/or the amplitude of the waves being wrong. The 

pattern correlation quantifies the contribution from phase errors; if the waves are 

perfectly in phase with the truth (correlation equals 1), the RMSE is solely due to 

amplitude errors. Compared to the truth, NoDA does capture most of the large-scale low-

frequency wave phases. For the MJO, its correlation is up to 0.98, indicating that using a 

perfect LBC in the current OSSEs plays a dominant role in modulating the model 

solution of MJO, which agrees with the sensitivity experiment results from Zhang et al. 

(2017). The ER, Kelvin, MRG and large-scale WIG waves also have reasonable 

forecasted phases in NoDA, but errors grow as wave phases propagate away from LBC 

and further downstream. The ER and MRG westerly signals at day 7 start from middle of 

the domain, which is not captured by NoDA. The large-scale WIG signals at east side of 

the domain are much weaker in NoDA than the truth, and for intermediate-scale WIG 

waves the signals are almost wiped out in the east half of the domain.  

 By assimilating observations in CNTL, the phase and amplitude of these wave 

modes are significantly improved. Figure 3.17 shows the error reduction from NoDA to 

CNTL as measured by root mean difference total energy (RM-DTE; Melhauser and 

Zhang 2012). The MJO amplitude error is further reduced in CNTL for all variables. For 

ER, Kelvin, MRG and large-scale WIG wave, the phase correlation is improved from 

~0.9 to almost perfect (Table 3.4). As for the more challenging intermediate-scale WIG 

waves, the phase correlation is also much improved for all variables (e.g. from 0.51 to 

0.83 for zonal wind). The precipitation has larger phase errors than other variables due to 
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its more limited predictability. Table 3.5 shows the relative impacts on WIG waves from 

assimilating different observations. Since these sensitivity experiments are only run for 9 

days, they are not diagnosed for lower-frequency large-scale waves. Assimilating AMV, 

Met7-Tb, and CYGNSS (NoProfile) significantly improves both large-scale and 

intermediate-scale WIG waves. The addition of ATOVS profiles further reduces the 

errors in all variables. The additional merit from higher-resolution profiles appears to be 

more important for better analysis and prediction of intermediate-scale WIG waves. 

3.7 Summary 

 In this study, a perfect-model OSSE is performed to evaluate the potential impact 

from assimilating satellite observations on the practical predictability of tropical 

multiscale weather systems. Following the previous chapter, a regional WRF model is 

configured to simulate the CCEWs during a 17-day period within the active phase of the 

October 2011 MJO event. The simulation captures the strong precipitation signals 

associated with the MJO, Kelvin and IG waves. The ER and MRG waves have relatively 

weak precipitation but well-defined zonal wind signals. Most wave components are at 

scales larger than 1000 km, except for IG waves that have a smaller-scale sub-diurnal 

component. The OSSE assumes that a perfect forecast model is used, and observation 

errors are also modeled perfectly during data assimilation.  

 Table 3.3 summarizes the benefits of assimilating each observing network every 

3 h using EnKF. According to Zhang et al. (2017), the global circumnavigating signals 

play an important role in MJO initiation inside their domain. Therefore, the perfect LBC 
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alone is able to provide the correct phase of most of the large-scale waves (MJO, ER, 

Kelvin, MRG), and their errors are dominated by amplitude errors. The smaller scale 

high-frequency waves (WIG), on the other hand, are less well constrained by LBC, and 

large phase errors occur without data assimilation. The CNTL experiment tests 

assimilation of ATOVS T and Q profiles and AMV wind observations for the 17-day 

period, and showed an improvement in winds, T, Q, and hydrometeors for scales larger 

than 200 km. For large-scale (l > 1000 km) CCEWs, their predictability limit can be 

extended by about 4 days after assimilation. However, the small-scale (l < 500 km) waves 

have more limited predictability with the extra prediction skill lasting for less than 1 day. 

The EnKF assimilation further improved amplitude for the large-scale waves, and 

reduced phase errors of intermediate-scale WIG waves as well. Assimilating CYGNSS 

wind speed retrievals is able to reduce errors in large-scale low-level horizontal wind and 

T. It provides complementary wind information to the surface and low levels where not 

many AMVs are available. 

 The Meteosat-7 infrared Tb has higher horizontal resolution and thus further 

improves the model variables at smaller scales. The improvement is found mostly in the 

ice, snow, and graupel mixing ratios near cloud top. However, the 3-h cycling is probably 

not frequent enough to maintain the extra prediction skill at small scales. Assimilating Tb 

from only 1 infrared channel does not constrain model dynamic and thermodynamic 

variables as efficiently as the ATOVS profiles. The later has advantage of combining 

multiple satellite images that has information at different vertical levels. The uniform 

horizontal distribution of ATOVS profiles yields a more persistent observation impact 

than the sporadic sampling of sparser GPSRO profiles. At COSMIC2 resolution, GPSRO 
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profiles have impacts approaching half of those from ATOVS profiles. Although the 

number of profiles is likely still 10 times fewer than the reduced-resolution ATOVS, their 

higher vertical resolution and more accurate retrievals of both T and Q bring more impact 

per profile. The better horizontal resolution from the ATOVS retrieval profiles and better 

vertical resolution from the GPSRO profiles can potentially complement each other. With 

expected much increased future CubeSat resolution, the GPSRO profiles may have an 

impact comparable or exceeding that from the current ATOVS profiles. The high-

resolution profiles can potentially improve smaller-scale weather systems, such as the 

sub-diurnal WIG waves coupled with transient convective processes. 
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Table 3.1. Space-time filtering parameters for each tropical weather system (CCEW 

type). 

  

CCEW type Spatial scale l 
(km) 

Time scale τ 
(days) 

Propagation 
direction 

Symmetry about the 
equator 

MJO >2000 >20 eastward both 

ER >1000 8-20 westward symmetric 

Kelvin >1000 3-10 eastward symmetric 

MRG >1000 4-10 westward anti-symmetric 

WIG (L) >1000 1-3 westward symmetric 

WIG (M) 500-2000 1/4-1 westward both 
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Table 3.2. Observed variable, their associated uncertainty (observation error), spatial 

resolution and approximate data count within a 3-h window of each tested observing 

network. 

  

Observing 
network 

Observed 
variable 

Observation 
error 

Horizontal 
spacing 

Vertical spacing / 
coverage 

Observation 
count in 3-h 
window 

ATOVS 
retrievals 

T ~2 K 90 km 1 km; surface to 0.1 hPa ~35000 

Q ~30% 2 km; surface to 200 hPa ~11000 

GPSRO 
retrievals 
(COSMIC2) 

T ~1.7 K irregular 
(~600 km) 

~100 m in low troposphere 
1 km in stratosphere 

  ~1660 

Q ~10%   ~1350 

AMV wind u, v 4.5 m s-1 irregular 
(~100 km) 

irregular spacing 
mostly covers ~200 hPa 

  ~1700 

Met7 IR Tb 
(channel 3) 

Tb 3 K 9 km column-averaged with 
weighting function 

~80000 

CYGNSS 
retrievals 

wind 
speed 

2 m s-1 45 km at ocean surface   ~3200 
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Table 3.3. Description of assimilated observing networks and their benefits (improvement 

in prediction skills in variables, scales and weather systems) found in each 

experiment.  

Experiment Assimilated observing networks Benefits in analysis/prediction skill 

NoDA None • Rely on LBC to constrain solution in domain. 
• Large-scale CCEWs (MJO, Kelvin, MRG, and 
ER) have some predictability in wave phase but with 
large amplitude errors. 

CNTL ATOVS profiles + AMV wind • Significantly improve winds, T, Q, and 
hydrometeors at large to intermediate scales. 
• Extend the practical predictability limit by ~4 
days for large scales. 
• Further reduce the amplitude error for large-scale 
CCEW and improve intermediate-scale WIG waves. 

+Met7 CNTL + Met7-Tb • Further improve ice, snow and graupel mixing 
ratio near cloud top for smaller scales. 

+CYGNSS CNTL + CYGNSS wind speed • Further improve large-scale low-level u, v, and T. 

NoProfile AMV wind + Met7-Tb + CYGNSS 
wind speed 

• AMV+Met7+CYGNSS can still improve u, v, T, 
and Q, although less effective than ATOVS profiles. 

+ATOVS NoProfile (AMV+Met7+ CYGNSS) + 
ATOVS profiles  

ATOVS profiles are essential in improving u, v, T, and 
Q, thanks to their fine spatial resolution and coverage. 

+ATOVScoarse NoProfile + ATOVS profiles reduced 
to 6 hourly and 180-km grid spacing 

• Although worse than the full-resolution profiles, 
there are still persistent improvements at large to 
intermediate scales. 
• Reduced resolution degrades smaller-scale WIG.  

+ATOVSthinV NoProfile + ATOVS profiles thinned 
in the vertical 

• Reduced information content in the vertical 
does not degrade analysis accuracy as much as 
reduction in horizontal and temporal resolution. 

+ATOVSerror1.5 NoProfile + ATOVS profiles with 
errors inflated to 150% 

+GPSRO NoProfile + GPSRO profiles at 
COSMIC2 resolution 

• Approaching but less than improvement from 
low-resolution ATOVS due to sporadic sampling.  

+GPSROdense NoProfile + GPSRO profiles at 
CubeSat resolution (25 times more 
data than COSMIC2) 

• More improvement than ATOVS thanks to finer 
vertical resolution and more accurate measurements. 

+GPSRON 
+GPSROdenseN 

Same as +GPSRO and +GPSROdense 
but assimilating refractivity (N) 
profiles 

• Nonlinear observation operator requires shorter 
localization distance. 
• Similar sensitivity to observation density. 
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Table 3.4. Root-mean-square errors with respect to the truth simulation for u (m s-1), T 

(K), Q (g kg-1), and precipitation (mm day-1) filtered for CCEW types described in 

Table 3.1. The errors are averaged over latitude (0-5°N) and time (17-day period). 

Pattern correlations with the truth are shown in parentheses. Results are compared 

between NoDA ensemble mean and CNTL posterior ensemble mean. 

  

CCEW type Experiment u T Q Precipitation 

MJO NoDA 0.39 (0.98) 0.063 (0.98) 0.072 (0.99) 1.97 (0.99) 

CNTL 0.17 (1.00) 0.025 (1.00) 0.020 (1.00) 0.53 (1.00) 

ER NoDA 0.50 (0.90) 0.064 (0.90) 0.073 (0.94) 1.18 (0.88) 

CNTL 0.19 (0.99) 0.033 (0.97) 0.027 (0.99) 0.61 (0.98) 

Kelvin NoDA 0.40 (0.92) 0.089 (0.92) 0.078 (0.87) 2.37 (0.83) 

CNTL 0.13 (0.99) 0.025 (0.99) 0.027 (0.98) 0.69 (0.99) 

MRG NoDA 0.33 (0.91) 0.029 (0.85) 0.088 (0.90) 1.00 (0.77) 

CNTL 0.15 (0.98) 0.012 (0.98) 0.021 (0.99) 0.41 (0.97) 

WIG (L) NoDA 0.38 (0.82) 0.067 (0.90) 0.078 (0.80) 2.83 (0.79) 

CNTL 0.14 (0.98) 0.025 (0.99) 0.032 (0.97) 1.20 (0.97) 

WIG (M) NoDA 0.38 (0.51) 0.097 (0.69) 0.060 (0.54) 4.88 (0.35) 

CNTL 0.25 (0.83) 0.061 (0.89) 0.047 (0.77) 2.83 (0.84) 
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Table 3.5. Similar to Table 3.4, but comparing results from NoDA, NoProfile, 

+ATOVScoarse and +ATOVS posterior ensemble mean from the first 10 days and 

for WIG waves. 

CCEW type Experiment u T Q Precipitation 

WIG (L) NoDA 0.37 (0.74) 0.060 (0.90) 0.072 (0.80) 2.92 (0.62) 

NoProfile 0.19 (0.94) 0.043 (0.95) 0.062 (0.86) 1.61 (0.92) 

+ATOVScoarse 0.14 (0.97) 0.031 (0.97) 0.045 (0.93) 1.06 (0.96) 

+ATOVS 0.13 (0.97) 0.025 (0.98) 0.032 (0.96) 0.90 (0.97) 

WIG (M) NoDA 0.32 (0.59) 0.086 (0.73) 0.056 (0.54) 4.30 (0.32) 

NoProfile 0.26 (0.74) 0.076 (0.80) 0.050 (0.66) 3.04 (0.74) 

+ATOVScoarse 0.24 (0.80) 0.069 (0.84) 0.048 (0.71) 2.56 (0.82) 

+ATOVS 0.23 (0.82) 0.059 (0.88) 0.046 (0.74) 2.10 (0.88) 
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Figure 3.1. Horizontal map of 15-day averaged daily precipitation (mm day-1) shown in 

the computational domain with ERA-Interim as initial and boundary condition. The 

OSSE domain is shown in black  
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Figure 3.2. Wheeler-Kiladis space-time spectra for the truth simulation: (a) symmetric 

and (b) asymmetric component about the equator. Signal strength from 1.1 to 2 is 

shown in gray shadings for precipitation and red contours for 850-hPa zonal wind. 

Dispersion relations for dry waves are shown with equivalent depth of 25 m. 

Horizontal (vertical) axis is zonal wavenumber (time frequency) but labeled with 

zonal wavelength (time period). 
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Figure 3.3. Longitude-time Hovmöller diagrams of precipitation (black contours from 2 

to 10 mm day-1 every 2 mm day-1) and 850-hPa zonal wind (color shadings; m s-1) 

averaged over 0-5°N from the truth simulation and filtered for each CCEW: (a) MJO, 

(b) ER, (c) Kelvin, (d) MRG, (e) large-scale WIG, and (f) intermediate-scale WIG 

waves.  

  



73 

 

Figure 3.4. (a) Vertical observation error profiles from ATOVS (solid) and GPSRO 

(dashed) for T (red) and Q (blue); (b) Horizontal map of observation location during a 

3-h window for ATOVS (solid black dots), ATOVS with reduced resolution (black 

cross), GPSRO at COSMIC2 resolution (red dots) and GPSRO at CubeSat resolution 

(blue circles); (c) AMV observation count (per 50-hPa vertical layer) during a 3-h 

window; (d) Horizontal map of AMV observation location color-coded with 

observation pressure height (hPa), black dots show location of CYGNSS wind 

observations. 
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Figure 3.5. Temporally and vertically averaged spectra for (a) kinetic energy (m2 s-2), (b) 

vertical motion (m2 s-2), (c) temperature (K2), (d) specific humidity (g2 kg-2), (e) 

rain+cloud water mixing ratio, and (f) ice+snow+graupel mixing ratios (g2 kg-2). Gray 

lines show spectra of the truth signal; red lines show spectra of the CNTL prior mean; 

black lines show spectra of CNTL error (difference between CNTL prior mean and 

the truth); and green lines show spectra of CNTL ensemble variance. 
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Figure 3.6. Longitude-time Hovmöller diagrams of precipitation (mm day-1) averaged 

over 0 to 5°N latitudes from (a) truth simulation, (b) NoDA ensemble mean, and (c) 

CNTL posterior ensemble mean. The precipitation fields are filtered for l > 200 km.  
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Figure 3.7. (a)-(c) Snapshots of 850-hPa streamlines and 3-h accumulated precipitation 

(shadings; mm), and (d)-(f) 850-hPa relative humidity (%) after 5.5 days of cycling 

(valid at 12UTC, 21 Oct). Results are compared for (a, d) truth simulation, (b, e) 

NoDA ensemble mean, and (c, f) CNTL posterior ensemble mean. All fields are 

filtered for l > 200 km. The left half of the OSSE domain is shown (10°S to 10°N, 55° 

to 75°E).  
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Figure 3.8. Times series of domain-averaged (a) root-mean difference kinetic energy (m 

s-1), and RMSEs of (b) vertical motion (m s-1), (c) temperature (K), (d) specific 

humidity (g kg-1), (e) rain+cloud water mixing ratio (g kg-1), and (f) 

ice+snow+graupel mixing ratio (g kg-1). The errors are also averaged over the vertical 

column and filtered for l > 200 km. Black lines show error from CNTL posterior 

ensemble mean and gray lines from NoDA ensemble mean. Colored lines show error 

evolution from ensemble forecasts initiated at day 5, 7, 9, 11, 13, and 15. All 

ensemble means are calculated from 10 members.  
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Figure 3.9. Vertical profiles of (a) RM-DKE (m s-1), and RMSEs of of (b) vertical motion 

(m s-1), (c) temperature (K), (d) specific humidity (g kg-1), (e) rain+cloud water 

mixing ratio (g kg-1), and (f) ice+snow+graupel mixing ratio (g kg-1). The errors are 

averaged over day 5 to 18 and filtered for l > 200 km. Black lines show error from 

CNTL posterior ensemble mean and gray lines from NoDA ensemble mean. Colored 

lines show error at forecast lead time of 12 hours, 1, 2, and 4 days. All ensemble 

means are calculated from 10 members.  
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Figure 3.10. Similar to Fig. 3.9 but showing the temporally and vertically averaged error 

energy spectra. The spectral errors are in variance units, e.g. m2 s-2 for DKE and K2 

for temperature. The spectrum are shown with respect to global horizontal 

wavenumber, 𝑘 = 𝑘R9 + 𝑘S9 , but labeled with its corresponding wavelength (𝑙 =

𝑘TB). 
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Figure 3.11. (a)-(d) Snapshots of channel-2 Tb (K), and (e)-(h) column integrated ice 

(gray), snow (red) and graupel (blue) mixing ratios (g kg-1) after 5.5 days of cycling 

(valid at 12UTC, 21 Oct) from (a, e) truth simulation, (b, f) NoDA ensemble mean, 

(c, g) CNTL posterior ensemble mean, and (d, h) +Met7 posterior ensemble mean. 
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Figure 3.12. (Top row) Time series, (center row) vertical profiles, and (bottom row) 

spectra of domain-averaged analysis errors in (columns from left to right) kinetic 

energy, temperature, specific humidity, and summed error from ice, snow, and 

graupel mixing ratios. Errors are shown as RMSE (RM-DKE for kinetic energy), 

except that the spectra show error variance.  The time series are vertically averaged 

and filtered for l > 200 km; vertical profiles are averaged over time and filtered for 

l > 200 km; spectra are averaged temporally and vertically. Results from NoDA, 

CNTL, +Met7, +CYGNSS and NoPofile are compared.  
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Figure 3.13. Same as Fig. 3.12, but showing results from NoDA, NoProfiles, +ATOVS, 

+ATOVScoarse, +GPSRO, and +GPSROdense.  
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Figure 3.14. Same as Fig. 3.12, but showing results from NoProfiles, +ATOVS, 

+ATOVScoarse, +ATOVSthinV, and +ATOVSerror1.5.  
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Figure 3.15. Same as Fig. 3.12, but showing results from NoProfiles, +GPSROdenseN, 

+GPSRON, +GPSROdense, and +GPSRO.  
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Figure 3.16. Longitude-time Hovmöller diagrams of 850-hPa zonal wind (color shadings; 

m s-1) averaged over 0-5°N latitudes from (top row) truth simulation, (center row) 

NoDA ensemble mean, and (bottom row) CNTL posterior ensemble mean. The fields 

are filtered for each CCEW shown in columns from left to right. 
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Figure 3.17. Longitude-time Hovmöller diagrams of RM-DTE with respect to the truth 

(m s-1) averaged over 0-5°N latitudes and vertical levels for (a)-(f) NoDA ensemble 

mean and (g)-(l) CNTL posterior ensemble mean. A space-time filter is applied to u, v 

and T for each CCEW (shown from left to right) before calculating the RM-DTE. 
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Chapter 4  

 

An adaptive covariance relaxation method for ensemble data 

assimilation 

4.1 Introduction  

 The ensemble Kalman filter (EnKF) combines information from a prior state 

estimate and its associated uncertainty (from an ensemble of model realizations) with 

observations and observation uncertainties to get an improved posterior state estimate and 

an updated uncertainty (Evensen, 1994). The accuracy of prior error covariance is one of 

the necessary criteria for optimal filter performance. In the presence of sampling and 

model error, the ensemble may underestimate the true uncertainty in the prior causing the 

filter to place too much weight on the prior mean state. Over time, the filter will begin to 

ignore the observed information, resulting in filter divergence. There are a number of 

methods for handling unrepresented error sources, among which covariance inflation 

methods are widely used. Empirical covariance inflation methods include multiplicative 

inflation (Anderson and Anderson, 1999), which increases the ensemble perturbations by 

a specified factor, and additive inflation (Mitchell and Houtekamer, 2000), which adds a 

random perturbation drawn from a specified error distribution to each member. Whitaker 

and Hamill (2012) hypothesize that multiplicative inflation methods can account for 

observation network related sampling error, while additive inflation is more suitable for 

treating model error. 
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 There are also methods specifically designed to handle sampling error due to 

limited ensemble size. For example, covariance localization (Hamill et al., 2001) treat 

sampling errors by tapering the Kalman gain far from the observation location, which 

removes some of the spurious correlations. Houtekamer and Mitchell (1998) proposed a 

double-ensemble EnKF in which ensemble-estimated covariance is used to update the 

other ensemble, therefore avoids inbreeding. More recently, a new formulation of the 

EnKF is proposed to account for the sampling bias due to the use of a limited-size 

ensemble (Bocquet, 2011; Bocquet and Sakov, 2012). For model error, treatments related 

to the forecast model can help maintain ensemble spread and ensure filter performance; 

such treatments include the use of a multi-physics or multi-model ensemble (e.g., Meng 

and Zhang, 2007), stochastic kinetic energy backscatter (Shutts, 2005; Berner et al., 

2009), and stochastically perturbed physics tendencies (Buizza et al., 1999). 

 Among the aforementioned methods, covariance inflation is favored due to its 

simplicity. However, given the large dimension of the dynamical systems of interest in 

atmospheric science, the process of tuning the inflation factor to suit a particular 

application is often costly. A variety of adaptive covariance inflation (ACI) methods are 

proposed to estimate inflation factors from innovation (observation-minus-forecast) 

statistics. The innovation statistics was first used to estimate parameters in forecast and 

observation error covariance matrices using a maximum-likelihood approach (Dee, 1995; 

Dee and da Silva, 1999; Dee et al., 1999). For example, Wang and Bishop (2003) 

formulated an online inflation estimation algorithm within the ensemble transform 

Kalman filter (ETKF) framework. Li et al. (2009) further extended the algorithm to 

simultaneously estimate covariance inflation and the observation error, using a set of 
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observation-minus-forecast diagnostics (Desroziers et al., 2005). They applied temporal 

smoothing to reduce the sampling bias due to a small innovation sample at each time step. 

Anderson (2007) provides an alternative algorithm by treating each innovation as a 

random variable and updates the inflation factor using a hierarchical Bayesian approach. 

These methods assume observations are uncorrelated. Zheng (2009) and Liang et al. 

(2011) relaxed this assumption and estimated an inflation factor from the innovation 

vector at each time step using a maximum-likelihood approach. They found that their 

algorithm is only efficient when estimating a scalar inflation factor constant in space.  

 Another important issue for any effective adaptive inflation method is how the 

method handles a spatially irregular observation network. For areas where no 

observations are available, applying an inflation factor constant in space may cause the 

variance of these unobserved variables to keep growing, sometimes even exceeding 

climatological variance. To alleviate this problem, Anderson (2009) extends the Bayesian 

approach to estimate a spatially and temporally varying inflation parameter, and assume 

that the spatial correlation factor of the inflation parameters is the same as the state 

variables. Miyoshi (2011) also introduces an algorithm that estimates inflation parameters 

that are spatially varying. He advances Li et al.’s method by including variance of the 

estimated inflation parameter from Central Limit Theorem, making it a Gaussian 

approximation of Anderson’s method. 

 In practice, the inflation factor is usually not physically constrained, which will 

often give rise to imbalance issues for complicated dynamic models. Zhang et al. (2004) 

developed a method that relaxes the posterior ensemble perturbations to the prior 

perturbations that effectively inflates the posterior ensemble yet preserves physical 



90 

balances of the ensemble perturbations. Following this concept, Whitaker and Hamill 

(2012) proposed a relaxation-to-prior-spread (RTPS) method that is equivalent to 

applying a spatially varying multiplicative inflation. As a property of ensemble filters, the 

posterior ensemble spread should be smaller than prior spread after assimilating 

observations. Spatially, the reduction in ensemble spread should only be found where 

observations are available. Therefore, the reduction of spread can serve naturally as a 

spatial mask for inflation in case of irregular observation network. The scalar relaxation 

parameter can effectively be an inflation factor given that it is allowed to be larger than 1. 

 In this chapter, we introduce an adaptive covariance relaxation (ACR) method 

that estimates the relaxation parameter of RTPS online according to innovation statistics. 

We will compare this new method to the non-adaptive RTPS as well as Anderson’s ACI 

method. The advantage of RTPS is its simplicity and its ability to provide a spatially 

varying inflation as in Anderson’s method. In the section 4.2, we will provide the 

mathematical formulation of the proposed ACR method, along with Anderson’s method 

described with the same notations for comparison. Experimental designs are presented in 

section 4.3 and the results are given in section 4.4. Section 4.5 gives the concluding 

remarks. 
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4.2 Methodology 

4.2.1. Ensemble Kalman filter 

 Generally speaking, the inflation methods described here should be applicable to 

most if not all variations of ensemble Kalman filters. In this study, we will use an 

ensemble square root filter (EnSRF) introduced by Whitaker and Hamill (2002) for 

testing. The EnSRF algorithm is described as follows. Let x be an n-by-1 column vector 

that holds all state variables. We introduce an ensemble of N members, or state vectors. 

The ensemble mean and the ith ensemble perturbation are denoted by 𝐱 and 𝐱@? = 𝐱@ − 𝐱, 

respectively. The background error covariance matrix is calculated from this ensemble 

using P = B
ATB

𝐱@?𝐱@?
VA

@<B . Let 𝐲X  be a p-by-1 column vector that contains all 

observations at the current time. The observations are drawn from a normal distribution 

𝒩 H𝐱Z,	R , where 𝐱Z is the truth state vector, H is a p-by-n linear operator that maps the 

state vector to observation space and R is the observation error covariance matrix that is 

assumed to be diagonal. We denote the jth row of H by Hj. The EnSRF assimilates 

observations serially to avoid large matrix inversion. The following equations are applied 

for j = 1, 2, ..., p to update 𝐱 and 𝐱@? from the prior [𝐱[ and (𝐱@[)′] to the posterior [𝐱^ and 

(𝐱@𝒂)′]. 

𝐱`ab = 	𝐱 + 𝝆d ∘ Kd(𝑦dX − Hd𝐱),     (4.1) 

(𝐱@`ab)′ = 	 𝐱@? + 𝜖d𝝆d ∘ Kd(0 − Hd𝐱@?), for i = 1, 2, ..., N, (4.2) 
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where Kd = cov(Hd𝐱, 𝐱)/[ 𝜎S,dX
9 + 𝜎S,d[

9]  is the Kalman gain, 𝝆d  is a localization 

function, the circle denote an element-wise production and 𝜖d = 1 +
k8,l
m :

k8,l
m :

; k8,l
n :

TB

 

is a square root modification term to account for the use of unperturbed observations (see 

Eq. 13 of Whitaker and Hamill 2002, denoted as 𝛼  in their paper). Here 𝜎S,d[
9

 and 

𝜎S,dX
9
 represent the background and observation error variances in observation space; 

they are the jth diagonal terms of HPHT and R, respectively. The model integrates the 

posterior estimates forward in time, providing the prior estimates for the next assimilation 

cycle. 

4.2.2. Calculation of inflation factor according to innovation statistics 

 The first component of an adaptive inflation algorithm is the calculation of 

inflation factor according to the spread deficiency indicated by innovation statistics. The 

innovation vector associated with the p observations is 𝐝XT[ = 𝐲X − H𝐱[ . Dee (1995) 

derived the following expression for the prior innovation statistics: 

E 𝐝XT[(𝐝XT[)V = HP[HV + R.    (4.3) 

The expected value for 𝐝XT[(𝐝XT[)V  needs multiple realizations to estimate, which 

typically comes from observations taken at different times. For adaptive inflation, we 

need an online estimate of the innovation statistics for each time, so a reduced statistic 

using only the p observations at one time is used. Given that p is large, the following 

relationship will hold: 

tr[𝐝XT[(𝐝XT[)V] = (𝐝XT[)V𝐝XT[ = tr HP[HV + tr R .   (4.4) 
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The deficiency in prior error variance can be expressed in terms of an inflation factor,  

𝜆[ = 𝐝XT[ V𝐝XT[ − tr R /tr HP[HV .   (4.5) 

Note that, if 𝐝XT[ V𝐝XT[ < tr R , the square root cannot be evaluated. In this case, 𝜆[ 

is set to 1. 

 Similarly, covariance inflation can be applied to the posterior ensemble according 

to the posterior innovation statistics (Desroziers et al., 2005): 

E 𝐝^T[(𝐝XT^)V = HP^HV,     (4.6) 

where 𝐝XT^ = 𝐲X − H𝐱^  and 𝐝^T[= H𝐱^ − H𝐱[ . And the inflation factor can be 

calculated as 

𝜆 = 𝐝^T[ V𝐝XT^/tr HP^HV 	.     (4.7) 

Note that the inflation factor in both (4.5) and (4.7) is estimated in observation space, 

thus additional steps are needed for applying this inflation in state space. 

4.2.3. Anderson’s adaptive covariance inflation (ACI) method 

 Anderson (2009) proposes a Bayesian approach for estimating a temporally and 

spatially varying inflation parameter from the innovation statistics. More specifically, the 

inflation parameters 𝜆5  are treated as random variables with normal distributions, 

Pr 	𝜆5 = 𝒩 𝜆5, 𝜎u,59 . This method uses Bayes’ theorem to update the distribution of 𝜆5 

by processing each innovation 𝑑dXT[ serially. For j = 1, 2, ..., p, the following procedure is 

performed for each state vector element k.  

Pr 𝜆5 𝑑dXT[ ∝ Pr 𝑑dXT[ 𝜆5 Pr 𝜆5 ,    (4.8) 
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where 𝑑dXT[ is the jth innovation 𝑦dX − Hd𝐱[. Each 𝑑d is assumed to be drawn from a zero-

mean normal distribution with variance 𝜃9 = 𝜆5X𝜎S,d[
9 + 𝜎S,dX

9
, where 𝜆5X  is the 

expected inflation in the observation space given the prior inflation value at k. The 

method assumes that the inflation parameters and state variables have the same spatial 

correlation structure, 

corr Hd𝐱, 𝑥5 = corr(𝜆X, 𝜆5).    (4.9) 

Given the prior value 𝜆5, the expected inflation 𝜆5X  can be calculated as 

𝜆5X = 1 + 𝜌5corr(𝜆X, 𝜆5)(𝜆5 − 1),    (4.10) 

where 𝜌5 is the kth component of the localization function used in (4.1). The observation 

likelihood in (4.8) can be expressed as  

Pr 𝑑dXT[ 𝜆5 = 2𝜋𝜃
TB
exp	[− 𝑑dXT[

9/2𝜃9].   (4.11)  

The updated 𝜆5 is found when Pr 𝜆5 𝑑d  reaches its maximum, thus 𝜆5 can be solved by 

taking the derivative of (4.8) with respect to 𝜆5  and setting it equal to zero. See 

Appendix A in Anderson (2009) for a detailed numerical method for finding the 

maximum of Pr 𝜆5 𝑑dXT[ . Also note that in Anderson’s derivation he uses 𝜆 as the 𝜆 

used in this paper. 

 Anderson’s algorithm updates the inflation parameter at k according to the jth 

innovation and the spatial correlation between the observation and the kth state variable. 

If the correlation is large, (e.g., for observations near k), 𝜆5X  is close to 𝜆5.	 When the 

correlation is small, 𝜆5X  approaches one. The amount of adjustment on 𝜆5  brought by 

𝑑dXT[ depends on the selection of 𝜎u,59 . A larger 𝜎u,59  indicates that the prior distribution of 
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𝜆5 has larger uncertainty, and should be adjusted more toward the value suggested by the 

innovation. Due to the nature of Bayesian inference, 𝜎u,59  should decrease after each 

update, limiting the innovation impact on 𝜆5 over time. In this study, we implement the 

method using the posterior 𝜆5 as the prior value for the next assimilation cycle, and 𝜎u,59  

is fixed in time for all k. 

4.2.4. Adaptive covariance relaxation (ACR) 

 Covariance relaxation can be considered as another approach for covariance 

inflation. Zhang et al. (2004) first proposed to relax the posterior ensemble perturbations 

to the prior: 

(𝐱@^)′}`~ = 1 − 𝛼 	(𝐱@^)′ + 𝛼	(𝐱@[)′,    (4.12) 

so that the posterior ensemble spread is artificially increased and the posterior retains a 

certain degree of physical balance from the prior ensemble perturbations. Whitaker and 

Hamill (2012) suggested to relax the ensemble spread instead of the perturbations, and 

formulated the RTPS method. For the kth state variable, its ensemble spread is rescaled to 

a mix of prior and posterior spread values controlled by α: 

𝑥5,@^
?
}`~
= (𝑥5,@^ )′ 𝛼

k�
nTk�

�

k�
� + 1 ,    (4.13) 

where 𝜎5 =
B

ATB
𝑥5,@?

9A
@<B  is the ensemble spread of the state variable 𝑥5 , and the 

superscript b and a denote prior and posterior values, respectively. Note that α  = 0 

implies keeping the original posterior spread, while α = 1 implies increasing the posterior 

spread back to the prior spread for each state variable. The rescaling term 
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𝛼 𝜎5[	 − 	𝜎5^ 	/	𝜎5^ + 1  works effectively as a multiplicative inflation factor for the 

ensemble perturbations of that state variable. Recall that, after assimilating observations, 

the posterior ensemble spread 𝜎^  becomes smaller than the prior spread 𝜎[ . This 

reduction in spread depends on the Kalman gain, which in turn depends on the 

localization distance and the observation location. When localization is applied, the 

reduction in spread should be larger in densely observed region and tapers to nearly zero 

in unobserved region, assuming all else in the Kalman gain (i.e. observation errors, etc.) 

are equal. Therefore, in RTPS, the relative reduction in ensemble spread, (𝜎[ − 𝜎^)/𝜎^, 

naturally serves as a spatial mask and a constant 𝛼 controls the magnitude of inflation.  

 The ACR method we propose takes advantage of the relative spread reduction 

term from RTPS, and reduces the problem to estimating a scalar parameter α online. To 

use innovation statistics, we need to calculate the overall relative reduction in ensemble 

spread in observation space. The overall relative spread reduction can be expressed as 

(𝜎S[ − 𝜎S^)/𝜎S^, where 𝜎S = tr HPHV /𝑝 and the overbar indicates an average over the 

p observations. We match the expected inflation in observation space with the inflation 

factor suggested by posterior innovation statistics (4.7), and solve for 𝛼: 

𝛼 k8nTk8�

k8�
+ 1 = 𝜆.     (4.14)  

Note that the calculated α value does not necessarily fall in the range of (0, 1). If the 

observation sample size p is small for each cycle, the inflation factor could become very 

noisy, in this case we apply temporal smoothing to 𝜆	in (4.14) to resolve this issue: 

𝜆Z,������ = 𝜆ZTB + (𝜆Z − 𝜆ZTB)/𝜏,    (4.15) 
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where 𝜆Z is the 𝜆 calculated for the current cycle and 𝜏 determines how fast 𝛼 responds to 

changes suggested by the innovation statistics. The use of a larger 𝜏 is equivalent to using 

the innovations from a longer period of time to calculate the observed inflation factor. 

The estimated α are applied in (4.13) in state space to relax the ensemble spread. 

4.3 Numerical experiment design 

 To test the methods described in the previous section, we run trials of cycling data 

assimilation using the Lorenz 40-variable model (Lorenz, 1996). The forecast model 

equations are 

�R�
�Z

= 𝑎(𝑥5;B − 𝑥5T9)𝑥5TB − 𝑑𝑥5 + 𝐹,  for k = 1, 2, ..., n,   (4.16) 

where a, d and F are model parameters for the nonlinear advection, damping and forcing 

terms and n = 40. The model is defined on a 1D domain with a periodic boundary. The 

true model sets a = 1, d = 1 and F = 8. We set the model time step to 𝛥𝑡 = 0.05, which 

corresponds to 6 hours. At each time step, the EnSRF update equations described in 

section 4.2.1 are applied. The radius of influence is set to 10 grid points for trials when 

covariance localization is applied. 

 To create synthetic observations, we add random noise to state variables 

generated from a simulation designated as the truth run. We set the observation noise σSX  

to 1.0, commonly used in previous studies (e.g., Anderson 2009; Miyoshi 2011). Two 

different types of observation networks are tested: fully-observed and half-observed. The 

fully-observed network has observations located on all state variables (i.e., H is the 

identity matrix), while the half-observed network has observations only for the first 20 
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“land” variables (the rest 20 “ocean” variables are unobserved) following the setup in 

Lorenz and Emanuel (1998).  

 For the RTPS, ACI, and ACR inflation methods, we run 10 trials, each trial 

consisting of 5000 time steps (corresponding to ~3.4 years). To evaluate the filter 

performance of each method, we calculate the analysis root mean square error (RMSE) 

and the consistency ratio (CR) for the final 1000 time steps of all 10 trials, mitigating 

issues that may arise during the spin up period of data assimilation. The RMSE is 

calculated by averaging the squared analysis error 𝑥^ − 𝑥Z 9 over the n state variables 

for the final 1000 time steps of all 10 trials, then taking the square root. For the fully-

observed cases, all n = 40 state variables are used to calculate RMSE, while for the half-

observed cases the “land” (“ocean”) variables located at k = 1, …, 20 (k = 21, …, 40) are 

used to calculate RMSE_land (RMSE_ocean). The CR is calculated by averaging the 

ratio tr HP[HV + R /(𝐝XT[)V𝐝XT[ over these time steps. If CR < 1, the background 

error variance is underestimated and the ensemble spread is too small, and vice versa. We 

specify the true R in our filter so that an erroneous Pb is the only reason why the 

statistical relation in (4.4) does not hold and CR deviates from one. We define “filter 

divergence” as a significant drop in the CR below 1 (ensemble spread is too small) and a 

growth in the RMSE to a value above the observation noise. 

 We introduce sampling error by reducing ensemble size (N) from 80 to 5. To 

introduce model error, we change the default parameters a, d and F in the forecast model. 

The forcing parameter F is gradually reduced from the true value 8 to 5, incrementally 

producing a less chaotic model. We change parameter a from 1 to 0.8 (d from 1 to 1.2) to 
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introduce error in the advection (damping) process in the forecast model. The inflation 

methods are also tested with combinations of errors in a, d, and/or F to examine if they 

can handle model errors from a mixture of processes. 

 For each error regime, we test the performance of Anderson’s method and the 

proposed ACR method. For simplicity, we will denote Anderson’s method as “ACI 𝜎u9”, 

where 𝜎u9 is the selected value for the variance of inflation parameter. We have tested 

ACI with 𝜎u9 = 0.1, 1, and 10, and show that results are sensitive to this parameter. For 

ACR, we have tested with the temporal smoothing parameter τ	= 1, 10, and 100, and only 

show results for τ = 100. Although the estimated inflation factor depends on the choice of 

𝜏, we found that the analysis RMSEs, on average, are not sensitive to this choice for the 

Lorenz 40-variable toy model. We also show results using the RTPS method with a range 

of α values (0-1) to serve as a benchmark. Note that α = 0 corresponds to the case when 

no inflation is applied. For both sampling and model errors, we test the inflation methods 

either with or without applying covariance localization. 

4.4 Results 

4.4.1. Performance with sampling error due to limited ensemble size 

 Sampling error may occur when using a limited-size ensemble to estimate the 

background error covariance. Figure 4.1 shows the results from the perfect-model fully-

observed cases where we gradually increase sampling error by reducing sample size N. 

Figures 4.1a and 4.1c show the analysis RMSE as a function of sample size for the case 

without and with localization, respectively, and Figs. 4.1b and 4.1d show the 
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corresponding CR. RMSE values in Fig. 4.1a are also documented in Table 4.1. 

Generally, as N decreases, the filter diverges (RMSE jumps above observation noise 

while CR drops below 1) at some point. We can define three ranges of N values: 1) stable 

range in which the filter is stable even without inflation; 2) unstable range in which the 

filter diverges even for the best-tuned inflation; and 3) the transition range in between 

unstable and stable range. We are interested in the transition range, because within this 

range a properly tuned inflation method can help restore filter stability. For the case 

without localization (Figs. 4.1a and 4.1b), the transition range is (15, 40). Results from 

non-adaptive RTPS show that, within this range, a larger amount of inflation (larger α for 

RTPS) is needed to restore filter stability for larger sampling error (smaller N). At N = 30, 

α = 0.1 is enough, while at N = 17, α = 0.3 is needed. In the stable range, no inflation is 

needed and α = 0 results in the lowest RMSE; increasing inflation (larger α) will increase 

RMSE. In the unstable range, we see that using a larger α  can help reduce RMSE 

slightly, but cannot prevent filter divergence. The ACR method is able to restore filter 

stability through the transition region, although the resulting RMSE is not as small as the 

best-tuned RTPS. For the ACI method, we found that relatively large σ�9 = 1 is needed to 

bring similar improvement as ACR. Recall that the value of σ�9  tunes how much an 

innovation impacts the final inflation field, thus a large σ�9 will lead to a final inflation 

that is close to the value suggested by innovation statistics. Note that Anderson (2009) 

sets σ�9 = 0.01 in his study. We found that this value only works well in the stable range. 

With localization (Figs. 4.1c and 4.1d), the filter’s tolerance to sampling error is greatly 
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increased. The transition range shifts to (4, 10). The ACR method can also restore filter 

stability in this case, and the ACI still needs at least σ�9 = 1 to bring such improvement. 

 For the half-observed case, we only show results when localization is applied 

(Fig. 4.2), because the model becomes unstable when the unobserved variables are also 

inflated; localization helps limit the inflation within the observed region in RTPS. In this 

case, we calculated analysis RMSE separately for the observed variables (RMSE_land, 

Fig. 4.2a) and unobserved variables (RMSE_ocean, Fig. 4.2b), and Fig. 4.2c shows CR 

in observation space. Comparing RMSE_land to RMSE in Fig. 4.1c, we can see that the 

analysis RMSE is smaller for the land variables in the half-observed case compared with 

the fully-observed case. The ocean variables maintain a relatively large ensemble spread 

that propagates down-stream, effectively inflating the ensemble covariance over land. We 

found that the filter does not diverge for the land variables until N reaches 5, while the 

ocean variables maintain a noise level higher than the observation noise that remain 

within the climatological bound. Similar to the fully-observed case, the ACR method also 

restores filter stability for N < 6. The ACI still needs a larger 𝜎u9 value to exhibit the same 

improvement. The RMSEs for ocean variables are also improved for N < 6 when adaptive 

inflation is applied to the land variables, which may result from the more accurate state 

estimates over land that propagates down-stream to the ocean. 

4.4.2. Performance with an imperfect forecast model 

 In this subsection, we test the inflation methods under the condition where an 

imperfect forecast model is used. Figure 4.3 shows results from the fully-observed cases 

with N = 40 and no localization. RMSE values in Fig. 4.3a are also documented in 
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Table 4.1.  In Figs. 4.3a and 4.3b, the F parameter is the only model error source. In this 

case, we see that only a tiny model error (F = 7.9) will lead to filter divergence without 

inflation. The RTPS method shows that, for larger model error, larger α  values are 

needed to restore filter stability. For example, 𝛼 = 0.2 is enough for F = 7.9, while 

𝛼	 = 	0.9 is needed for F = 5. Similar to the sampling error cases, we found the ACR 

method able to estimate an α  close to the optimal value and reduce the RMSEs 

significantly. As for ACI, 𝜎u9 = 0.1  only brings limited improvement, while 𝜎u9 = 1 

brings improvement that is comparable to ACR method. To show the performance under 

a combination of model error sources, we also increase damping by 20% (d = 1.2, 

Figs. 4.3c and 4.3d) and decrease nonlinear advection by 20% (a = 0.8, Figs. 4.3e and 

4.3f). In both cases, the optimal value for 𝛼 is much larger (~0.8) with a smaller reduction 

in RMSE, with both cases RMSE still under the observation noise. We found that the 

ACR method handles all types of model error well; a similar improvement can be 

achieved by ACI only when using a relatively large 𝜎u9. 

 Figure 4.4 shows results from half-observed cases for N = 10 with localization. In 

this case, similar to sampling error cases in Fig. 4.2, the filter tolerates model error more 

when localization is applied. The filter does not diverge without inflation until F is as 

small as 6 (Fig. 4.4a). We also show a combination of error sources from F, a and d as in 

Fig. 4.3, and found that the ACR method also handles all types of model error well, while 

ACI needs large σ�9 to achieve this improvement. 
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4.4.3. Spatial and temporal behavior of inflation parameters 

 In this subsection, we examine the spatial and temporal behavior of the inflation 

parameters estimated by the ACR method, namely the 𝛼(𝜎5[ − 𝜎5^)/𝜎5^ + 1 term in (13). 

It is desirable that the adaptive methods automatically adjust the inflation parameters both 

in space and time to account for the inhomogeneity. Figure 4.5 compares the spatial 

pattern of inflation parameters averaged over time between different inflation methods 

for two half-observed cases with large error sources. The inflation from RTPS can be 

thought of as a scalar α value ranging from 0 to 1 that tunes a spatial pattern (the relative 

ensemble spread reduction term). We set the localization distance to 10, so that 

observations over land (k = 1, …, 20) do not impact the center of the ocean (k = 30). The 

average inflation is larger over land than over the ocean, with a maximum near k = 1 and 

tapering to zero from k = 20 to k = 30. Since the domain is cyclic (periodic boundary 

condition), the maximum is at the downstream side of the ocean, where large 

uncertainties propagate toward the land. For the ACR method, the resulting inflation 

pattern has the same properties as the RTPS method. On the other hand, the ACI method 

uses the 𝜎u9 value to tune the overall amount of inflation. In the presence of large model 

error (Fig. 4.5b), 𝜎u9 = 0.1 leads to overall inflation of only ~1.01 over land. Increasing 

𝜎u9 to 1 increases the inflation to ~1.05, but the maximum near k = 1 is not well captured. 

Increasing 𝜎u9  to 10 produces the inflation pattern similar to ACR, but it appears to be 

noisier.  

 Figure 4.6 shows the time series of 𝜆, the inflation factor estimated in observation 

space from ACR, for the cases with no error sources (Fig. 4.6a) and with large model 
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error (Fig. 4.6b). The temporal smoothing 𝜏 value is set to 1, 10, and 100. As expected, 

larger 𝜏 value leads to a more smoothed 𝜆 in time. For the case with no error sources, the 

𝜆 value is close to 1 throughout the time period, while for the case with large model error, 

𝜆 is elevated to ~1.2. In our experiments, although 𝜆 has different temporal variability 

depending on the 𝜏 value used, the resulting temporally averaged 𝜆 and analysis RMSE 

are not particularly sensitive to the choice of 𝜏 (not shown). One caveat arises if τ is set 

too large, e.g. as large as the model integration time period, so the algorithm adjusts the 

inflation too slowly causing the filter to diverge before inflation reaches the required 

magnitude. Therefore, the optimal τ should no be too large so that the adjustment of the 

inflation magnitude is faster than the accumulation rate of unrepresented errors, but not 

too small so that inflation becomes too noisy in time. 

 The ACI method treats each innovation as one observation and uses it to update 

the inflation field. The updated inflation will be a weighted average of its prior value and 

the “observed” value suggested by the innovation, with the weight dependent on the 

selection of 𝜎u9  values. The ACR method will be equivalent to ACI if we use one 

innovation at a time in (7) to get an “observed” inflation factor and also update the prior 

inflation factor by the weighted average. We can reformulate the temporal smoothing 

equation (15) as an update equation that weights the observed and prior inflation factors, 

similar to the reformulation of the temporal smoothing equation in Li et al. (2009) by 

Miyoshi (2011) as a Gaussian approximation to the ACI method. In doing so, we should 

expect both methods to have similar sensitivity to the choice of σ�9 or τ values. However, 

in our experiments, we used all p innovations at each time step to derive the “observed” 
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inflation factor deterministically in (7), rather than treating each innovation as a random 

variable. Even if 𝜏 = 1, the inflation factor is still derived from innovation statistics using 

p observations, which is equivalent to using a large σ�9  in the ACI method. In 

consequence, the analysis RMSE is insensitive to the choice of τ  from 1 to 100. 

However, increasing 𝜏 reduces the noise and variability in the estimated inflation factor. 

From Fig. 4.6 we see that the inflation factor has larger variance and frequently exceeds 

1.5 when 𝜏 is set to 1. Though the noisy inflation factor works for the Lorenz 40-variable 

model, further research is needed to show whether it still works for other more complex 

models and/or observation network. It is possible that an inflation factor that has too large 

a variance in time may be a potential issue for less autonomous models. 

4.5 Summary 

 Covariance inflation can improve filter performance by inflating the ensemble to 

account for the unrepresented sampling/model errors. Tuning the inflation parameter can 

be costly, therefore adaptive algorithms that estimate the inflation online according to 

innovation statistics have been introduced in previous studies (Wang and Bishop, 2003; 

Anderson, 2007; 2009; Li et al., 2009; Miyoshi, 2011). The online estimated inflation 

parameter adjusts to the value suggested by innovation statistics. When a spatially 

irregular observation network is used leaving some state variables unobserved, a spatially 

varying inflation parameter is likely needed. Inflating the unobserved variables may 

cause their ensemble spread to keep increasing, and therefore likely leads to filter/model 

instability. To introduce spatially varying covariance inflation, the ACI method 
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(Anderson, 2009) treats the inflation parameters as individual random variables and 

updates them using “observed” inflation from innovations. In this study, an alternative 

ACR method is introduced. We start with the RTPS method (Whitaker and Hamill, 

2012), in which a spatially varying relative ensemble spread reduction term is used to 

mask the inflation to only the observed variables. We show that this reduction term is a 

direct result from assimilating observations whose spatial pattern depends on observation 

location and localization distance. The ACR method estimates the relaxation parameter in 

RTPS by matching innovation statistics in observation space, therefore it is equivalent to 

a spatially and temporally varying inflation. Numerical experiments with the Lorenz 40-

variable model show that the ACR method can restore filter stability with the presence of 

sampling/model error for a range of severity. It is found that the spatial inflation pattern 

estimated by ACI is noisier compared to ACR and does not capture the location where 

ensemble spread deficiency is most severe. Also, ACI results are sensitive to the tunable 

variance of the inflation parameter, while ACR results are less sensitive to the tunable 

temporal smoothing parameter. 

 Both the RTPS and the algorithm for online estimation of relaxation parameter are 

easy to implement for the proposed ACR method. Therefore, it has the potential for real-

data atmospheric model applications. The results in this study only apply to the Lorenz 

40-variable model, thus there are several potential issues regarding the use of real 

observations and more complicated models that we want to stress. First, the real 

observations usually contain variables with different units. In this case, the innovation 

statistics (4.5) and (4.7) should use normalized observations so that each type of 

observation has comparable contribution (see Eq. 18 in Wang and Bishop, 2003). Second, 
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for complicated models, the dynamics can be also inhomogeneous in space. In this case, 

one needs to verify that the system of interest (e.g. a hurricane) is well covered by 

observations and the observations outside of the system are excluded so the innovation 

statistics truly reflect the inflation needed for the system of interest. Finally, for real 

observations, the observation operator may be nonlinear. Since we estimate the relaxation 

parameter in observations space and apply it in state space, the nonlinear relation between 

observation and state space may cause the relaxation parameter to be either under- or 

overestimated. In this case, one may need a tangent linear observation operator to map 

state space to observation space. 
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Table 4.1. Analysis RMSEs using no inflation, ACR, best-tuned RTPS and ACI methods 

(columns) for different error sources (rows) including sampling error and model error. 

The fully-observed case without localization is shown (corresponding to Figs. 4.1a 

and 4.3a). 

 No inflation ACR RTPS (optimal α) ACI 0.1 ACI 1 

N = 80 0.1920 0.2163 0.1851 (0.1) 0.1925 0.1955 

40 0.2181 0.2275 0.1821 (0.1) 0.2106 0.1977 

20 4.0032 0.2766 0.1926 (0.2) 2.4608 0.3541 

17 4.1459 0.4561 0.2198 (0.3) 2.7773 0.5846 

15 4.2028 1.6785 1.5101 (0.9) 3.0480 0.8755 

10 4.4331 3.3941 2.9290 (0.9) 3.8840 3.3389 

5 4.7771 4.5219 3.7310 (1.0) 4.6173 4.4831 

F = 8 0.2154 0.2378 0.1880 (0.1) 0.1979 0.2012 

7.9 3.9566 0.2918 0.2221 (0.3) 1.9667 0.3285 

7.5 4.0564 0.4435 0.3424 (0.6) 2.0047 0.6668 

7 4.0107 0.5835 0.4231 (0.7) 2.2781 0.8577 

6 4.0423 0.7783 0.5234 (0.8) 2.7079 1.0630 

5 4.1770 0.9044 0.5939 (0.9) 2.9864 1.1891 
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Figure 4.1. Analysis RMSE (top row) and consistency ratio (bottom row) for the fully-

observed cases with different degrees of sampling errors introduced by changing the 

ensemble size (N). Left (right) column shows result without (with) localization 

(ROI = 10). The gray line shows the observation noise level. The colored lines show 

inflation parameters for RTPS with 𝛼 ranging from 0 to 1, the cross markers (no 

inflation) is equivalent to α = 0. Triangle and square markers correspond to the ACI 

methods with 𝜎u9 = 0.1 and 1, respectively. Circle markers correspond to the ACR 

method. Note that we show more data points in the transition region ranging from the 

filter being stable to diverging. The transition region is different for the cases without 

localization (N = 15-40) and with localization (N = 4-10).  
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Figure 4.2. Analysis RMSE and consistency ratio for the half-observed cases (N = 10 

with localization). RMSE_land (RMSE_ocean) is calculated using the observed 

(unobserved) variables along with the truth, while the consistency ratio is calculated 

in observation space (observed variables only). The legend is the same as Fig. 4.1. 
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Figure 4.3. Analysis RMSE (left column) and consistency ratio (right column) for the 

fully-observed cases (N = 40 without localization) with different degree of model 

errors introduced by varying parameters F, a and d. Within each panel, F varies from 

5 to 8. For each row, a different combination of a and d values are used. The legend is 

the same as Fig. 4.1.  
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Figure 4.4. Same as Fig. 4.3, but showing half-observed cases (N = 10 with localization). 
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Figure 4.5. The spatial structure of inflation parameters for the half-observed cases 

(N = 10 with localization) with two types of severe error sources: (a) sampling error 

with N = 5 and (b) model error with F = 5. The colored lines show inflation 

parameters for RTPS with 𝛼 ranging from 0 to 1. Gray triangle, square and cross 

markers correspond to ACI methods with 𝜎u9 = 0.1, 1 and 10, respectively. 
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Figure 4.6. Time series of the inflation factor (𝜆) from ACR method for half-observed 

cases (N = 10 with localization) with (a) perfect model and (b) model error F = 5. 

Only the first and last 200 steps are shown. Blue, red and black lines correspond to 

𝜏 = 1, 10 and 100, respectively. 
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Chapter 5  

 

On the selection of localization radius in ensemble filtering for 

multiscale quasi-geostrophic dynamics 

5.1 Introduction  

 Covariance localization (Hamill et al. 2001) is a pragmatic procedure for 

ensemble filters (Houtekamer and Zhang 2016) to remedy sampling errors due to limited 

ensemble size. In practice, the ensemble size is usually much smaller than the number of 

state variables and observations, and is not large enough to span all possible directions in 

phase space for the update, which is known as the rank problem (Lorenc 2003). If no (or 

insufficient) localization is applied, the spurious long-distance sample-estimated 

correlation is not removed and contaminates the filter performance. On the other hand, if 

too much localization is applied, it not only discards useful observations, but also 

introduces noise at small scales due to the artificial tapering of the analysis impact. The 

noise introduced by localization also causes physical imbalance of the analysis (Kepert 

2009; Greybush et al. 2011; Lange and Craig 2014). A simple localization function is the 

Gaspari and Cohn (1999) fifth-order polynomial with a specified cutoff radius (hereafter 

referred to as the GC function). This tapering function can be either applied directly to 

the background error covariance in model space (Houtekamer and Mitchell 1998), or to 

the analysis increment limiting the impact of observations to nearby state variables 

(Houtekamer and Mitchell 2001; Hamill et al. 2001). The result of either approach is 
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similar but the effective localization radius is smaller for the latter (Sakov and Bertino 

2011; Nerger et al. 2012). The optimal localization radius finds a balance between the 

removal of sampling noise and the preservation of useful observation information. 

Operationally, the tuning of localization radius considers multiple factors including fit to 

observations, balance, computational cost, model resolution, and observation density. 

Manual tuning of the localization radius by trial and error for a particular model and 

ensemble filtering system can be very costly. One may desire a more flexible adaptive 

scheme to determine the localization a priori. However, to design such a scheme requires 

knowledge of the complex codependence of localization on the underlying correlation 

scale determined by the model dynamics, the ensemble size, and the observing network.  

 Anderson (2007) demonstrated that the optimal localization function could be 

quite different from a smoothed Gaussian. This motivates the exploration of localization 

functions that adapt to the flow-dependent error covariance (Anderson 2007, 2012; 

Bishop and Hodyss 2007, 2009). Anderson and Lei (2013) derived an Empirical 

Localization Function (ELF) based on the information from an Observing System 

Simulation Experiment (OSSE). The physical intuition behind these adaptive methods is 

that localization should only reduce the observation impact when the signal-to-noise ratio 

is low. In practice, localization distance is often tuned to scale with the overall correlation 

length. The tuned localization distance is O(1000) km for global modeling and data 

assimilation systems, but a much shorter localization distance of O(10) km is found more 

suitable for convective weather systems using high-resolution models and observations 

(Zhang et al. 2009; Sobash and Stensrud 2013). Since the horizontal correlation length 

scale increases with height, several studies have found that localization radius should also 
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increase with height (Zhu et al. 2013; Houtekamer et al. 2014; Kleist and Ide 2015). Lei 

et al. (2015) demonstrated that a narrower horizontal but wider vertical localization scale 

is preferred for precipitating regions. For atmospheric flows with multiple spatial scales 

(e.g. high-resolution model domains capturing both synoptic- and convective-scale flows), 

the data assimilation scheme should handle multiple correlation lengths simultaneously. 

Zhang et al. (2009) first proposed a Successive Covariance Localization (SCL) approach 

that localizes the observation impact with a hierarchy of radii to account for different 

physical length scales. Multiscale localization methods are further explored and found 

more advantageous than normal single-scale localization in several other studies 

(Miyoshi and Kondo 2013; Li et al. 2015; Buehner and Shlyaeva 2015).  

 Despite all these efforts to develop a better localization scheme, a comprehensive 

theory of localization is still lacking. It is still not clear what makes a smaller localization 

radius more suitable for convective-scale weather systems, whether it is due to the higher 

model and observation resolution or the shorter overall correlation lengths. Zhen and 

Zhang (2014) systematically explored the codependence of localization on the underlying 

physical scales and the ensemble size for a single observation. As a result, an optimal 

localization scheme was derived and tested in the Lorenz (1996) model framework. 

Flowerdew (2015) proposed a similar method but allowed the localization function to 

have a shape other than Gaussian. These methods are yet to be tested in more complex 

models that contain multiple physical scales. A theory for optimal localization with a 

dense observing network may be more complicated than the theory for a single 

observation (Flowerdew 2015). Previous studies have documented the sensitivity of 

localization to observation density. From a perfect-model OSSE, Anderson (2007) 
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showed that the optimal localization function is broader for regions with dense 

observations than for an isolated observation. However, in real-data experiments, Dong et 

al. (2011) and other studies found that a smaller localization radius is necessary to 

achieve better analysis accuracy for denser observing networks. Kirchgessner et al. (2014) 

suggested that optimal localization radius is obtained when the effective observation 

dimension is about equal to the ensemble size for dense observations. Periáñez et al. 

(2014) derived an optimal localization radius by high-level heuristic arguments assuming 

a uniform observing network, and they also suggest using a smaller localization radius for 

denser observations. These studies suggest there may be a more complicated relation 

between observing network and localization. 

 In this chapter, we seek to systematically explore the relative importance of 

physical correlation lengths, model resolution, ensemble size, and observing networks to 

the selection of localization radius, which will provide insights on the development of a 

better localization scheme for multiscale weather systems. A series of sensitivity 

experiments are conducted using the two-layer quasi-geostrophic (QG) model. The QG 

model, although simple, can capture the essence of multiscale atmospheric dynamics. GC 

functions with fixed cutoff radii are investigated in a serial ensemble Kalman filter 

(EnKF), and the best localization radius for a given scenario is determined by trial and 

error. Section 5.2 describes the QG model and EnKF configuration and the design of 

sensitivity experiments. Section 5.3 demonstrates the scale dependency of the best 

localization radius, and is followed by sensitivity experiment results in section 5.4 that 

show how the best localization radius varies in response to changes in model resolution, 

ensemble size, and observing network. Our findings are summarized in section 5.5. 
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5.2 Experimental design 

5.2.1 Two-layer quasi-geostrophic model 

 The two-layer QG model described in Smith et al. (2002) is adopted to perform 

numerical experiments in this study. Previous literature has comprehensively documented 

its dynamical processes (Larichev and Held 1995; Held and Larichev 1996; Salmon 

1998; Smith et al. 2002). Harlim and Majda (2010) used this model to investigate the 

assimilation of a sparse observing network for the atmosphere. The model is defined on a 

doubly periodic square domain and simulates the large-scale atmospheric flow with 

baroclinic instability induced from an imposed vertical wind shear. Background 

streamfunction is defined as ΨB = −𝑈𝑦 for the top layer and Ψ9 = 𝑈𝑦 for the bottom 

layer, where U is the mean flow. The prognostic equations for perturbations around this 

background state can be written as 

���
�Z
+ 𝐽 𝜓B, 𝑞B + 𝑈 ���

�R
+ 𝛽 + 𝑘�9𝑈

���
�R

= 0,   (5.1) 

��:
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+ 𝐽 𝜓9, 𝑞9 − 𝑈 ��:

�R
+ 𝛽 − 𝑘�9𝑈

��:
�R

+ 𝑟𝛻9𝜓9 = 0,  (5.2) 

𝑞B = 𝛻9𝜓B +
5�
:

9
𝜓9 − 𝜓B ,       (5.3) 

𝑞9 = 𝛻9𝜓9 −
5�
:

9
𝜓9 − 𝜓B ,      (5.4) 

where subscript 1 denotes the top layer and 2 the bottom layer; 𝜓 is the perturbation 

streamfunction and 𝑞  is the perturbation QG potential vorticity; 𝐽 𝜓, 𝑞 = 𝜕R𝜓		𝜕S𝑞 −

𝜕S𝜓	𝜕R𝑞 is the Jacobian term representing the nonlinear advection; 𝛽 is the meridional 

gradient of the Coriolis parameter; 𝑘� is the Rossby deformation wavenumber; r is the 
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strength of linear Ekman drag that removes large-scale energy buildup from the bottom 

layer. Two characteristic wavenumbers corresponding to the Rossby deformation scale 

and the Rhines scale are defined as  

𝑘� = 𝐿/2𝜋 𝑓/ 𝑔′𝐻,      (5.5)  

and 

𝑘¡ = 𝐿/2𝜋 𝛽/𝑈¢,      (5.6)  

respectively, where 𝑓 is the Coriolis parameter, 𝑔? is the reduced gravity, 𝐻 is the vertical 

scale height, 𝑈¢	is the horizontal velocity scale, and L/2π is a scaling factor. The kinetic 

energy spectrum of the QG model features an energy injection due to baroclinic 

instability near the deformation scale 𝑘�TB. For scales larger than the deformation scale 

(𝑘 < 𝑘� ), there is an inverse cascade of kinetic energy with a -5/3 power law. The 

cascade halts at a scale 𝑘¡,£TB that is determined by both the 𝛽 effect and the bottom drag r. 

At scales smaller than the deformation scale (𝑘 > 𝑘�), the enstrophy cascades forward 

and dissipates at the smallest scales, resulting in a -3 power law for kinetic energy. The 

model mimics this dissipation with an exponential cutoff filter that removes energy 

buildup at the smallest scales (see Appendix B of Smith et al. 2002). 

 A baseline configuration used in this study sets the model parameters as 𝑘� = 20, 

𝑘¡ = 4, U = 0.2 U0 and r = 0.5. Let L = n dx be the domain size, where n is the number of 

grid points in both zonal and meridional directions and dx is the grid spacing. The model 

resolution is set to n = 128, which resolves kmax = 63 modes in each direction. The 

exponential filter cutoff wavenumber is k = 40. These parameters are chosen similarly to 

the atmospheric case from Harlim and Majda (2010) except that the deformation 
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wavenumber here is larger to produce a wider range of scales with baroclinic instability. 

The typical deformation length scale for the large-scale atmospheric flow is 1000 km. 

With this scaling, the model grid spacing dx corresponds to ~80 km in real atmospheric 

models. The average eddy turnover time is ~0.15 non-dimensional time units, which 

corresponds to ~2 days. 

5.2.2 Ensemble filter 

 The data assimilation method used in this study is the ensemble square root filter 

(Whitaker and Hamill, 2002), a serial EnKF, which is described as follows. Let x be the 

state variable vector, and let 𝑦X be the observation vector. An ensemble of N members is 

introduced to estimate the flow-dependent background error covariance. For each 

observation indexed with subscript j, the following equations are applied to update the 

ensemble serially to reach the final analysis. 

𝑥 ¥¦§¨�a = 𝑥 + 𝜌d ∘ 𝐾d 𝑦dX − 𝐻d𝑥 ,     (5.7) 

𝑥@? ¥¦§¨�a = 𝑥@? + 𝛾d𝜌d ∘ 𝐾d 0 − 𝐻d𝑥@? ,  for 𝑖 = 1, 2, … , 𝑁, (5.8) 

where  𝑥 is the ensemble mean, 𝑥@? is the ensemble perturbation for the i-th member, 𝜌d is 

a localization function,	𝐾d is the Kalman gain defined as 

𝐾d =
cov 𝐻d𝑥, 𝑥

var 𝑦dX + var 𝐻d𝑥
 

 ,   (5.9) 

𝛾d is a square-root modification term defined as 
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𝛾d = 1 +
var 𝑦dX

var 𝑦dX + var 𝐻d𝑥

TB

 

.    (5.10) 

Here cov 𝐻d𝑥, 𝑥  is the background error covariance between observations and state 

variables, var 𝑦dX  is the observation error variance, and var 𝐻d𝑥  is the associated 

background error variance. The linearized observation operator 𝐻d is not used in this 

study. Instead, the 𝐻d𝑥  and 𝐻d𝑥@?  terms are approximated by ℎd(𝑥) and ℎd 𝑥@ − ℎd(𝑥), 

respectively, where ℎd  is the nonlinear observation operator and overbars denote 

ensemble averages.  

 GC functions with fixed localization radii are adopted as the localization function 

𝜌. Localization radius (radius of influence, or ROI) is defined as the physical distance at 

which the analysis increments are tapered to zero. The adaptive covariance relaxation 

method introduced in the chapter 4 is also applied to maintain ensemble spread and 

prevent catastrophic filter divergence. 

5.2.3 Observing network and assimilation experiments 

 A control (CNTL) experiment is first performed using the baseline configuration 

in section 5.2.1. The truth (nature run) is generated by initializing the QG model with 

white noise and running the model for 50 time units until it reaches a quasi-steady state. 

A 15-time-units model run (~200 days) during the quasi-steady state is taken as the truth. 

Cycling data assimilation is performed using an ensemble of N = 64 members and 

assimilating synthetic observations simulated from the truth every Δ𝑡 = 0.05 time units, 
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which yields 300 cycles in total. Under a perfect-model assumption, the truth model is 

used as the forecast model during cycling data assimilation. Using the trial-and-error 

method, the best-performing ROI that yields the lowest analysis error variance is 

determined. Analysis errors are also decomposed into spectral components to evaluate the 

scale dependency in filter performance. Sensitivity experiments are designed to test how 

the best-performing ROI changes in response to changes in model resolution, ensemble 

size and observing network. Table 5.1 summarizes the model and filter parameters used 

in each experiment. ROI is defined as a physical distance and expressed in terms of the 

number of grid points in CNTL (i.e. ROI = 8 means a cutoff distance of 8 dx). Cases with 

ROI = 8, 16, 32, 64, as well as no localization (ROI = ∞), are tested for each experiment. 

Some additional values of ROI are tested in the neighborhood of the minimum analysis 

error to more accurately estimate the best-performing ROI. 

 Instead of assimilating the state variable 𝜓 directly, a more challenging scenario 

is considered where temperature (𝜃) or horizontal winds (u and v) are observed from the 

top model layer. Let 𝑘R and 𝑘S be the zonal and meridional wavenumbers, respectively. 

The nonlinear observation operators that convert 𝜓 to u, v, and 𝜃 can be described in 

spectral space. 

𝑢 = −𝑖𝑘S𝜓,      (5.11) 

𝑣 = 𝑖𝑘R𝜓,      (5.12) 

𝜃 = − 𝑘R9 + 𝑘S9	𝜓,     (5.13) 

where hats denote the two-dimensional Fourier transform of a variable. Figure 5.1 shows 

snapshots of the top-layer 𝜃 and u in comparison to the corresponding 𝜓 from the truth 
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simulation. The 𝜃 field is overall in phase with 𝜓 but has more small-scale details. On the 

other hand, u is not in phase with 𝜓  and their peaks are not collocated. Synthetic 

observations are generated by first converting 𝜓 from the truth simulation to observations 

according to (5.11)-(5.13), and then adding simulated observation errors randomly drawn 

from a zero-mean normal distribution with error variance of 𝜎9. The observation errors 

are considered uncorrelated both in space and in time. For CNTL, a uniform observing 

network of top-layer 𝜃 with 𝜎 = 3 is used. Although the bottom layer is not observed, the 

top-layer observations provide information for both layers because the flow simulated in 

CNTL is mostly barotropic, especially for the large scales. However, not all model grid 

points on the top layer are observed. Therefore, the horizontal propagation of information 

is important for good filter performance. Let Δ𝑥 be the spacing between observations in 

both directions, the number of observations in each direction is 𝑛X = 𝑛	𝑑𝑥/Δ𝑥 . For 

CNTL, the observation density is set to Δ𝑥	 = 	3	𝑑𝑥. For a uniform observing network 

with independent random instrument errors, the spectral variance of its observation error 

can be exactly calculated. The observation error variance associated with wavenumber k, 

R(k), is inversely proportional to the number of observations 𝑛X9, 

𝑅 𝑘 = 2𝜋𝑘	𝜎9/𝑛X9.      (5.14) 

With fixed instrument error 𝜎, a denser observing network yields lower observation error 

spectral variance thanks to the larger number of observations. Sensitivity to changes in 

observing network, including its density, accuracy and spatial homogeneity, will be tested 

in section 5.4.3. 
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 To diagnose filter performance, the analysis error (difference between posterior 

ensemble mean and the truth) variance is averaged over the cycling data assimilation 

period. When 𝜃 is assimilated, the state variables will be converted to 𝜃 to calculate the 

analysis error variance. When u and v are assimilated, the analysis error variance for u 

and v will be calculated and then combined as an error kinetic energy, which is defined as 

(𝑢9 + 𝑣9)/2. The errors are further decomposed into spectral components to facilitate the 

comparison across scales. The analysis error variance associated with the wavenumber k 

component is defined as 

𝐸 𝑘 = 𝜀(𝑘R, 𝑘S)
9

56:;58:<5:
	 

,   (5.15) 

where 𝜀 is the two-dimensional Fourier transform of the analysis error and 𝑘 = 𝑘R9 + 𝑘S9 

is the global wavenumber. Summing E(k) over a range of wavenumbers will yield the 

mean square error (MSE), or root mean square error (RMSE) if the square root is taken, 

associated with this scale range. In this study, the spectrum is divided into three bands: 

large (L; k = 1-4), intermediate (M; k = 5-20), and small (S; k = 21-63) scales. 

 To generate the prior ensemble, random white noise is added to the truth initial 

condition for each member and an ensemble forecast is run for a spin-up period of 1.5 

time units until the ensemble spread reaches climatological level. Figure 5.2a shows the 

kinetic energy spectrum from the truth (black line) and time evolution of error kinetic 

energy from the ensemble mean (colored lines) during this spin-up period. Error saturates 

when its kinetic energy reaches the level of the reference kinetic energy. The M scale 

follows a -5/3 power law associated with the inverse energy cascade, where the small-
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scale errors saturate faster than the large-scale errors and an overall upscale error growth 

is present. As errors grow upscale, they have more large-scale components, which results 

in an increasing overall correlation length scale. An estimation of this correlation length 

is shown in Fig. 5.2b for 𝜃 observations and Fig. 5.2c for u observations. The mean 

absolute correlation (MAC) estimated from the ensemble is averaged over the observing 

network and plotted as a function of horizontal distance. Both MACs for 𝜃 and u are 

broadening over time. The MAC for u has a nonlocal peak due to the fact that u and 𝜓 

maxima are not collocated, and the correlation between u and 𝜓 is overall much lower 

than the correlation between 𝜃 and 𝜓. The ensemble after spin-up is used as the prior for 

the ensuing data assimilation cycles.  

5.3 Scale-dependent best localization radius 

 Figure 5.3 shows the time evolution of 𝜃 MSE at L, M, and S scales from CNTL 

using ROI = 8, 16, 32 and 64. The first several cycles undergo an adjustment (filter spin 

up) period of approximately 20 cycles before the filter performance reaches steady state. 

The cases using smaller ROIs experience longer filter spin up periods than the cases 

using larger ROIs. Earlier in the spin up period, the larger ROI = 32 and 64 cases perform 

better than smaller ROIs. However, for the steady state, the ROI = 16 case appears to 

improve, while the ROI = 64 case is clearly suboptimal. At L scale, ROI = 32 is more 

favorable. ROI = 16 occasionally performs as well as ROI = 32, but on average is worse. 

On the other hand, at M scale, the ROI = 16 and 32 cases are competitive at steady state. 

For the S scale, the ROI = 16 case appears to have better performance.  These results 
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indicate a scale dependency for favorable ROIs. The following calculation of time-

averaged analysis errors will exclude the first 50 cycles to make sure that results reflect 

steady-state filter behavior, and the long record (250 cycles) ensures robust statistics not 

influenced by transient behavior. Figure 5.4a shows the time-averaged 𝜃 spectral error 

variance E(k) from CNTL. Along with the analysis error variance, the observation error 

variance R(k) and error variance from a free ensemble without data assimilation (NoDA) 

are also plotted for reference. The observation error variance follows a +1 power law 

associated with white noise, and the NoDA error is fully saturated at all scales and thus 

resembles the reference spectrum from the truth. Note that the 𝜃  spectrum follows a 

similar power law to the kinetic energy. From L to S scales, the best ROI that minimizes 

analysis error variance at that scale appears to shift toward smaller values. The S scale is 

not observed due to coarser observation resolution than the model grid, thus the analysis 

errors remain mostly saturated at this scale.  

 Two experiments, M_Scale and S_Scale, similar to CNTL but with changed 

reference kinetic energy spectra are conducted to further demonstrate the scale 

dependency of the best ROI. Figures 5.4b and 5.4c show their resulting error spectra. 

The CNTL reference spectrum has a peak at the L scale (k = 3), and this spectral peak is 

shifted toward M and S scales by changing model parameters r, 𝑘�, and U. As bottom 

drag r increases, more energy is removed from the large-scale end of the spectrum, and 

the halting scale 𝑘¡,£TB becomes smaller. The zonal wind shear (±𝑈) is increased to inject 

more baroclinic instability to ensure that eddies have similar amplitudes as the CNTL. 

For S_Scale, the deformation scale (𝑘�TB) is also shifted to a smaller scale (𝑘� = 35) to 
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allow baroclinic instability to develop. The resulting M_Scale and S_Scale experiments 

simulate eddies with different sizes from CNTL. M_Scale is dominated by eddies at M 

scale and S_Scale by eddies at S scale, which is also reflected in their averaged eddy 

turnover time (~0.1 for M_Scale and ~0.07 for S_Scale).  

 Results confirm that the best-performing ROI decreases as the dominant scale of 

the system becomes smaller. For a given system, if there is one dominant scale, our 

results suggest that this scale will determine the best localization radius. A fixed ROI 

works well when there is only one dominant scale. Figure 5.5a plots the analysis errors 

for all scales with respect to ROIs. The overall best ROI that minimizes domain-averaged 

analysis RMSE is near 24 for CNTL, and it shifts to 16 for M_Scale and 12 for S_Scale. 

When a wider range of scales is present, a fixed ROI may become insufficient to 

minimize errors at all scales, and a different ROI should be specified for each scale, as 

suggested by previous studies (Zhang et al. 2009; Miyoshi and Kondo 2013; Li et al. 

2015; Buehner and Shlyaeva 2015). Figure 5.5b illustrates this by plotting the CNTL 

analysis RMSE filtered for the L, M, and S scales with respect to ROIs. The L-scale 

component favors ROI = 32, the M scale favors ROI = 24, and the S scale favors 

ROI = 16.  

 The relationship between correlation length scale and localization distance is not 

necessarily one-to-one (Anderson and Lei 2013; Anderson 2016). In this study, we 

hypothesize that the best localization radius scales with the overall correlation length. 

One can consider a multiscale data assimilation problem as successively constraining 

from the large to small scales that have decreasing correlation lengths. Figure 5.6 plots 

the MAC functions filtered for L and S scales from CNTL. The shape of correlation 
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functions on average is very different for L and S scales. The correlation function is 

broader at L scale than at S scale. The magnitude of overall correlation at zero distance is 

lower at L scale than at S scale. When a larger ROI is used, the averaged correlation 

remains lower than when a smaller ROI is used, which indicates larger ROIs constrain 

the analysis ensemble more than smaller ROIs. The analysis ensemble also tends to be 

more dispersive for cases using smaller ROIs, which can be inferred from the amount of 

inflation determined by the adaptive covariance relaxation algorithm. The relaxation 

coefficient averaged over time for the ROI = 8, 16, 24, 32, and 64 cases are 𝛼 = -0.23, 

0.17, 0.27, 0.35, and 0.57, respectively. A larger 𝛼 means more inflation is applied to the 

analysis ensemble. 

5.4 Sensitivity experiments 

5.4.1 Model resolution 

 Numerical models usually cannot resolve all the scales of an atmospheric flow. In 

this section, we investigate cases using models that have lower resolutions than the truth 

model that generates the synthetic observations. For the QG model used in CNTL, the S 

scale features a forward enstrophy cascade, and the M scale features an inverse energy 

cascade. A model with resolution reduced to kmax = 31 is first investigated. Comparing to 

the CNTL model, it has most of its S scale truncated and cannot accurately resolve the 

forward enstrophy cascade. Model parameters are selected to ensure that the low-

resolution model has a large-scale energy spectrum matching with the high-resolution 

model in CNTL. Without the forward enstrophy cascade, a stronger enstrophy filter 
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(exponential cutoff at k = 20) is applied, and the baroclinic instability is slightly 

increased. Such model tuning is typically done in real atmospheric models, too, although 

more sophisticated methods such as parameterization are used to account for processes 

that these models cannot resolve. The low-resolution model is first tested in a perfect-

model scenario in the LowRes experiment, where the observations are generated from a 

truth run using the same low-resolution model. Figure 5.7a shows the analysis error 

spectra from the cases using different ROIs. Other than the slightly elevated smallest-

scale energy in LowRes, the results are very similar to the CNTL experiment (Fig. 5.4a). 

In LowRes_Model experiment, the low-resolution model is only used in the forecast step 

of the data assimilation and observations sampled from the high-resolution truth in CNTL 

are assimilated. The resulting analysis error spectra are shown in Fig. 5.7b. Figure 5.8 

plots the analysis RMSE filtered for L and M scales with respect to ROIs. Comparing 

LowRes (red), and LowRes_Model (blue) to CNTL (black), the reduced model resolution 

does not appear to influence the best ROI at the well-resolved L scale, while the best ROI 

at M scale slightly decreases due to the representation errors. The time-averaged adaptive 

relaxation coefficients are 𝛼 = 0.25 for LowRes (similar to CNTL where 𝛼 = 0.27) and 

𝛼 = 0.32 for LowRes_Model, indicating more inflation is applied to the ensemble spread 

when representation errors are present. 

 Another model with even lower resolution kmax = 21 is tested in LowRes2 

(Fig. 5.7c) and LowRes2_Model (Fig. 5.7d). In this case, the lack of resolution starts to 

influence the representation of baroclinic instability near the deformation wavenumber. 

To fully resolve the baroclinic instability, the deformation wavenumber is changed to 

𝑘� = 14. Although some tuning is made to match the model climatology with CNTL, the 
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error growth rate is slightly higher at larger scales for this low-resolution model. This is a 

common situation for real atmospheric models where key dynamical processes cannot be 

well-represented at the small scale and therefore model forcing is biased. In the perfect-

model scenario, LowRes2 (Fig. 5.7c) shows that the best ROI becomes larger due to the 

increased error growth rate at larger scales. Figure 5.8 also shows this shift in best ROI 

from CNTL to LowRes2 for both L and M scales. When observations from CNTL are 

assimilated instead, LowRes2_Model (Fig. 5.7d and green line in Fig. 5.8) shows that 

although the steady-state analysis RMSE is larger due to the presence of larger model 

errors, the best ROI stays relatively unchanged from CNTL for the L scale. The averaged 

adaptive relaxation coefficient is larger for LowRes2_Model ( 𝛼  = 0.58) than for 

LowRes2 (𝛼 = 0.23) due to the presence of a large representation error.  

 Previous studies (e.g. Aksoy et al. 2012) have demonstrated the negative impact 

from representation errors when assimilating observations from a high-resolution nature 

run while the model is at a coarser resolution. Various methods are proposed to account 

for these representation errors in data assimilation algorithms to reduce their negative 

impact (Janjić and Cohn 2006; Bocquet et al. 2011; Hodyss and Nichols 2015; van 

Leeuwen 2015). Our results indicate that localization is not sensitive to model resolution 

as long as a dynamical process is well resolved and/or model representation errors are 

well-accounted for in the data assimilation scheme. Note that we define the localization 

ROI in terms of the physical length which does not change as model resolution reduces. 

If the ROI is defined as a number of grid points, it will change as model resolution 

changes (i.e fewer grid points for lower resolution). Also note that our conclusions are 
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drawn from QG model experiment results. Whether this can be generalized to other 

systems is yet to be confirmed with further experimentation. 

5.4.2 Sampling error due to limited-size ensemble 

 Given the same observing network and a perfect model, a larger ensemble size 

provides more accurate sample-estimated error covariances and therefore improves the 

accuracy of the analysis. The negative impact of sampling error on filter performance can 

be demonstrated by decreasing the ensemble size N. To test the sensitivity of localization 

to N, experiments are conducted with N = 16, 32, 256, 1024, and compared to N = 64 as 

in CNTL. Figures 5.9a-c plot the resulting L-, M-, and S-scale analysis RMSEs as a 

function of ROI. The trend that the ROI that minimizes analysis RMSE at a certain scale 

becomes larger as N increases is seen for all three bands. These results are consistent with 

previous studies (Houtekamer and Mitchell 2001; Lorenc 2003; Zhang et al. 2006; 

Anderson 2007, 2012). When a larger N is used, there is also a wider range of ROIs 

around the best ROI that produce similar filter performance, indicating less sensitivity to 

localization scale in this case (Lei and Whitaker 2017). Not surprisingly, the minimum 

analysis RMSE is achieved using the largest N = 1024. This is consistent with the recent 

study of Kondo and Miyoshi (2016) who demonstrated with their 10240-member 

ensemble that with large enough ensemble size one can achieve the best filter 

performance without localization. Figure 5.10a shows the steady-state MACs estimated 

from analysis ensembles of different sizes. Correlation decreases as horizontal distance 

increases. Beyond the decorrelation length scale, the true correlation should be zero on 

average. Due to sampling error, the limited-sized ensembles have MACs that asymptote 
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to non-zero correlation values, and the asymptotic value increases as N decreases. Since 

data assimilation constrains the observed scales and reduces error, the analysis error has 

less large-scale contribution and a shorter overall correlation length compared to errors 

from a free ensemble without data assimilation (Yoon et al. 2010). Ensemble forecasts 

from the analyses will have correlation lengths that increase as errors grow upscale and 

eventually saturate again as shown in Fig. 5.10c. 

 Assimilating u and v observations is more challenging than 𝜃 observations since 

their correlation functions are nonlocal. The sensitivity experiments mentioned above are 

repeated using u and v as observations, and the resulting analysis RMSEs are plotted with 

respect to ROIs in Figs. 5.9d-f. Figure 5.10b shows the steady-state MACs for each 

experiment, and the time evolution of a MAC during ensemble forecasts is shown in 

Fig. 5.10d. Similar to the 𝜃  observation cases, the asymptotic correlation values are 

unchanged when u and v observations are assimilated. The overall correlation is much 

lower compared to 𝜃 observations. As forecast errors grow and larger scales contribute 

more, the nonlocal correlation peak shifts toward longer distances. For larger ROIs, the 

trend that the best ROI increases as N increases is unchanged. However, an extra penalty 

is present for smaller ROIs that are too short and exclude the nonlocal correlation peaks 

that are important sources of information for this case. As a result, as N decreases, the 

best ROI does not decrease beyond the distance at which these nonlocal correlations 

peak. 
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5.4.3 Accuracy and density of the observing network 

 The sensitivity of localization to changes in the observing network is tested in this 

section. In CNTL, we considered a uniform observation grid coarser than the model grid 

(𝛥𝑥 = 3	𝑑𝑥). When observation density increases (𝑛X  increases), the observation error 

spectral variance R(k) will decrease according to (5.14). In the ObsSparse experiment, the 

horizontal observation interval is set to Δ𝑥 = 9	𝑑𝑥, which yields an R(k) 9 times larger 

than that from CNTL. Changes in network density have two different effects on filter 

performance. First, the observation error variance R(k) is changed (“accuracy effect”). 

Second, the number of independent pieces of information available within the 

localization scale to constrain each state variable is also changed (“number effect”). To 

separate these two effects, another experiment, ObsErrorX3, is conducted in which the 

observing network is of the same density as CNTL but its observation error standard 

deviation 𝜎 is increased by a factor of 3 resulting in the same R(k) as ObsSparse (i.e. only 

the accuracy effect is present in ObsErrorX3). In both ObsSparse and ObsErrorX3, the 

information provided by the observation is less accurate. The other effect of increasing 

observation accuracy is tested in ObsDense where the horizontal observation interval is 

set to Δ𝑥 = 1	𝑑𝑥 , and ObsError/3 where observation density is unchanged but 

observation error standard deviation 𝜎 is decreased by a factor of 3. Figure 5.11 shows 

error spectra from these experiments, and Figs. 5.12a-c plot their analysis RMSEs 

filtered for L, M, and S scales with respect to ROIs. For ObsSparse (Fig. 5.11a), the 

ROI = 8 case is excluded because this ROI is smaller than the observation interval which 

results in only one observation available to constrain each state variable. 
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 With both accuracy and number effects, a sparser observing network favors a 

larger ROI to achieve best filter performance, and a denser network favors a smaller ROI 

(compare CNTL, ObsSparse, and ObsDense in Figs. 5.12a-c), which is consistent with 

findings from several previous studies (Dong et al. 2011; Zhu et al. 2013; Periáñez et al. 

2014; Kirchgessner et al. 2014; Snook et al. 2015). It is evident that the observation error 

variance R(k) influences the lowest analysis error variance E(k) achievable, and the best-

performing ROI is larger when a less accurate observing network is used. The accuracy 

effect alone is responsible for some of the sensitivity in localization at L and M scales as 

R(k) is reduced. A more accurate observing network with smaller R(k) yields a smaller 

E(k) that has reduced contribution from large scales, which causes its correlation length 

to be shorter so that a smaller ROI is favorable. However, for S scale, the accuracy effect 

does not change the best ROI because prior error is still saturated at this unobserved scale 

despite a lower R(k). The number effect can be seen by comparing ObsSparse to 

ObsErrorX3 (also ObsError/3 to ObsDense) in Figs. 5.12a-c. The former has lower 

observation density than the latter while they share the same R(k). As fewer pieces of 

independent information are available within the localization scale (ROI), the range of 

ROIs with good performance around the best ROI gets narrower. This implies that the 

sensitivity to localization increases as fewer independent observations are available. Both 

accuracy and number effects contribute to the sensitivity of localization to changes in the 

observing network. The accuracy effect appears to be more important when observations 

are dense. As observations become sparse, the number effect becomes more important. 

 Spatially inhomogeneous observing networks are more common than uniform 

observation grids. The irregularity in the horizontal location of observations precludes the 
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calculation of observation error spectral variance. We repeated the experiments in this 

section using observations randomly located in the domain but keeping the number of 

observations and instrument error unchanged. Figures 5.12d-f show results from using 

these irregular observing networks compared to their regular network counterparts 

(Figs. 5.12a-c). Overall, the behavior of an irregular network is very similar to a regular 

one with the same accuracy and density. The only difference is that an irregular network 

yields larger analysis error, especially for sparse networks where there are occasionally 

fewer observations within the localization scale. For a sparse irregular observing 

network, the best ROI is larger than the best ROI for a regular network with the same 

number of observations. These results suggest that an irregular observing network is less 

efficient in reducing analysis error that a uniform network with the same number of 

observations. 

5.5 Summary 

 In this study, numerical experiments are conducted to test the scale dependency of 

localization and its sensitivity to several aspects of an ensemble modeling and data 

assimilation system. The two-layer quasi-geostrophic (QG) model is employed as the 

forecast model. It is a simple model but captures the essence of large-scale atmospheric 

dynamics with a realistic spectral energy distribution. Compared to standard test models 

such as the Lorenz (1996) system, the QG model has better representation of multiscale 

dynamics and therefore is better suited for testing when scale is the key concern. The data 

assimilation method considered here is the square root filter (Whitaker and Hamill, 2002) 
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with an adaptive covariance relaxation (chapter 4) that ensures filter stability. The 

Gaspari and Cohn (1999) function with fixed localization radius is applied in the filter, 

and the localization radius that minimizes analysis error is determined by trial and error. 

The findings are summarized as follows. 

1) The best localization radius is scale dependent. For a weather system, the overall 

best localization radius scales with its dominant correlation length scale. When 

multiple scales of motion are present simultaneously, the localization that minimizes 

analysis error at a certain scale also depends on the correlation length for that scale. 

For example, larger scale favors larger localization radius. A multiscale localization 

can achieve better filter performance by specifying a scale-dependent localization 

radius. 

2) A lower model resolution does not change the best localization radius (defined as a 

physical distance) for the resolved scales as long as the model representation of the 

dynamical processes is correct. If the low-resolution model cannot adequately 

resolve some key dynamical processes, the incorrect model dynamics will give rise 

to representation errors when assimilating observations. However, if adaptive 

inflation methods are applied to account for these representation errors, the 

localization radius is not sensitive to model resolution changes. 

3)  Consistent with previous studies, a decrease in ensemble size is found to cause the 

best localization radius to shift to smaller values, and the range of localization radii 

with good performance also becomes narrower. However, this behavior changes 

when assimilating observations whose correlations with state variables are nonlocal. 

For correlation functions with peaks at a certain distance (i.e. correlation between u 
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and 𝜓), further reducing the localization radius will not remedy sampling error as 

ensemble size decreases. 

4) Increasing the density of observing networks without changing the instrument error 

causes the best localization radius to shift to smaller values. Two effects contribute 

to this behavior. (i) A denser network yields lower spectral observation error 

variance for the large scales, which lowers the large-scale prior error. As a result, the 

overall correlation length scale decreases for the prior ensemble due to less 

contribution from large-scale errors. (ii) A denser network provides more pieces of 

independent observation information within a localization radius, and a smaller 

radius is enough to allow the same number of observations to constrain each state 

variable.  Irregular networks behave similarly to regular ones with the same density 

in terms of best localization radius, except that a larger radius is favored for irregular 

networks when observations are too sparse to sample a certain scale. 
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Table 5.1. Description of model and filter parameters used in control and sensitivity 

experiments. In each experiment, a range of ROIs is tested and the ROI that 

minimizes analysis RMSE is determined. 

Experiment Model and filter parameters (changes relative to CNTL) 

CNTL kmax = 63, kd = 20, 𝑘¡ = 4, U = 0.2U0, r = 0.5 (spectral peak at large scale) 
ensemble size N = 64 
assimilate 𝜃 observations every 3dx with 𝜎 = 3 every t = 0.05 

Scale dependence:  

M_Scale U = 0.5U0, r = 6 (spectral peak at intermediate scale) 

S_Scale kd = 35, U = 0.6U0, r = 20 (spectral peak at small scale) 

Sensitivity to model resolution:a 

LowRes kmax = 31 for both truth and forecast model  

LowRes_Model kmax = 31 forecast model but truth is from CNTL 

LowRes2 kmax = 21, kd = 14 for both truth and forecast model 

LowRes2_Model kmax = 21, kd = 14 forecast model but truth is from CNTL 

Sensitivity to sampling error:b 

N16, N32, N256, N1024 ensemble size N changed to 16, 32, 256, and 1024 

Sensitivity to observing network:c 

ObsSparse, ObsDense horizontal observation interval changed to 9dx and 1dx, respectively 

ObsErrorX3, ObsError/3 observation error std changed to 𝜎 = 9 and 𝜎 = 1, respectively d 
 

a The ROI is in physical distance units (number of grid points from CNTL model), e.g. ROI = 8 
means 8 grid points in CNTL, which corresponds to 4 grid points in LowRes, and only 2.67 grid 
points in LowRes2. 
b The ensemble size experiments are also repeated for the case where u and v are assimilated 
instead of 𝜃. 
c The observing network experiments are first performed with regular (horizontally uniform) 
networks, then repeated with irregular networks (randomly located) that match the density and 
accuracy of the regular ones. 
d The observation error level is the same for ObsErrorX3 and ObsSparse, they both have 3 times 
larger RMSE than CNTL. 
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Figure 5.1. Snapshots of (a) 𝜃 and (b) u in color shadings and state variable 𝜓 in black 

contours (solid lines for positive and dotted lines for negative values). The 𝜓, 𝜃, and 

u variables are nondimensionalized. The scaling of the QG model is described in 

section 5.2.1. 
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Figure 5.2. (a) Spectra of error 

kinetic energy from ensemble 

mean (color-coded with forecast 

time) and the time-averaged 

reference kinetic energy from the 

truth (black) during an ensemble 

spin-up period of 1.5 time units. 

(b) Spatially averaged mean 

absolute correlation (MAC) 

between 𝜃  and 𝜓  plotted as a 

function of horizontal distance 

(number of grid points) also 

color-coded with forecast time as 

in (a). (c) Same as (b) but 

showing correlation between u 

and 𝜓. 
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Figure 5.3. Time series of 𝜃 MSE from CNTL filtered for the (a) L, (b) M and (c) S 

scales. Results are shown for errors from free ensemble (NoDA; black), observation 

(gray), and from analysis mean using ROI = 8, 16, 32, and 64 (colored). 
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Figure 5.4. 𝜃 error spectra from 

(a) CNTL, (b) M_Scale, and (c) 

S_Scale. Results are shown for 

errors from a free ensemble 

(NoDA; black), observation 

(gray), and from analysis mean 

using ROI = 8, 16, 32, and 64 

(colored). The CNTL NoDA 

error is shown as dotted lines in 

(b) and (c) for reference. 
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Figure 5.5. (a) 𝜃 RMSE plotted with respect to ROI from CNTL (black), M_Scale (blue) 

and S_Scale (red); (b) Same as (a) but showing 𝜃 RMSE from CNTL filtered for the 

L (black), M (blue) and S (red) scales. The filled circles indicate the ROI with lowest 

analysis error. 
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Figure 5.6. MAC between 𝜃 and 𝜓 filtered for L (dotted) and S (solid) scales estimated 

by the prior CNTL ensemble using ROI = 8, 16, 24, 32, and 64. The MACs are 

averaged over space and time and plotted as a function of horizontal distance (number 

of grid points). 
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Figure 5.7. 𝜃 error spectrum of NoDA (black), observation (gray), and analysis ensemble 

mean using ROI = 8, 16, 32, and 64 (colored) from (a) LowRes, (b) LowRes_Model, 

(c) LowRes2, and (d) LowRes2_Model experiments. The CNTL NoDA error 

spectrum is shown as dotted lines for reference. The ROI is in physical distance units 

(number of grid points from CNTL model), e.g. ROI = 8 means 8 grid points in 

CNTL, which corresponds to 4 grid points in LowRes, and 2.67 grid points in 

LowRes2. 
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Figure 5.8. 𝜃 RMSE filtered for (a) L and (b) M scales plotted with respect to ROI. 

Results are compared for CNTL, LowRes, LowRes_Model, LowRes2 and 

LowRes2_Model.  
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Figure 5.9. 𝜃 RMSE filtered for (a) L, (b) M and (c) S scales plotted with respect to ROI 

compared for the N = 16, N = 32, N = 64 (CNTL), N  = 256 and N = 1024 cases. 

Filled circles indicate the minimum error corresponding to the best ROI. (d)-(f) Same 

as (a)-(c) but showing root mean error kinetic energy from the cases assimilating u 

and v. 
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Figure 5.10. (a) MAC between θ and ψ from the posterior ensemble with changing 

ensemble size N = 16, 32, 64, 256, 1024 using the best ROI. (b) Same as (a) but 

showing MAC between u and ψ from the cases assimilating u and v. (c) Time 

evolution of MAC between 𝜃  and 𝜓  from ensemble forecasts initialized with 

posterior from the N = 64 case, the lines are color-coded with forecast time t = 0 to 

t = 1.5 every 0.05 time units. (d) same as (c) but showing MAC between u and 𝜓 

from the cases assimilating u and v. 
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Figure 5.11. Error spectra of free ensemble mean (NoDA; black), observation (gray), and 

analysis mean using ROI = 8, 16, 32, and 64 (colored) from (a) ObsSparse, (b) 

ObsErrorX3, (c) ObsDense, and (d) ObsError/3 cases. 
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Figure 5.12. 𝜃 RMSE filtered for (a) L, (b) M and (c) S scales plotted with respect to ROI 

for the cases with changing observing networks: ObsSparse, ObsDense, ObsErrorX3 

and ObsError/3. Filled circle markers indicate the minimum error corresponding to 

the best ROI. (d)-(f) Same as (a)-(c) but showing results from using irregular 

observing networks.  
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Chapter 6  

 

Concluding Remarks 

6.1 Predictability of multiscale tropical weather systems 

This dissertation seeks to identify the practical and intrinsic predictability limits 

for multiscale tropical atmosphere, and evaluate the potentials in assimilating current and 

future satellite observations to improve the practical predictability of tropical weather at 

different scales. Using a regional convection-permitting model, Weather Research and 

Forecasting (WRF), predictability limits are estimated for each component of the 

convectively coupled equatorial waves (CCEW) through systematic ensemble sensitivity 

experiments with perturbed initial and boundary conditions. At each spatial scale, the 

divergence rate of ensemble members tells us how fast errors grow; the faster error 

growth the more limited predictability. Predictability limit is reached when the ensemble 

spread is indistinguishable from random climatological draws. With realistic errors 

sampled from the operational global model forecasts, we estimated that the current 

practical predictability limit is about 8 days for waves at large scales (>2000 km). For 

smaller-scale (<200 km) waves, the predictability limit decreases to less than 1 day. The 

intrinsic limit of predictability, an upper bound of the expected prediction skills, was also 

estimated by running the ensemble experiments with perturbation variances reduced to 

only 1% the realistic level. The intrinsic predictability limit is found achievable beyond 2 

weeks for planetary-scale weather systems, while the smaller scale phenomena still have 
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an intrinsic limit of less than 3 days. There is a sharp transition from slow to fast error 

growth at the intermediate scales (~500 km), separating the more predictable large-scale 

wave components from the less predictable small-scale weather systems. 

The current findings encourage the future development in data assimilation and 

modeling system to further improve the predictability of CCEWs. However, further 

experiments are required to evaluate the impact to tropical weather predictability from 

several error sources not accounted for in the current idealized experiment. The 

convection-permitting WRF model, although providing a reasonable representation of 

CCEWs, is still not perfect. In this study, only the uncertainties from model IC and LBC 

are accounted for when estimating practical predictability. While the IC and LBC 

uncertainties are sampled from realistic forecast errors, the estimated practical 

predictability may potentially differ from those estimated from other modeling systems 

that account for additional error sources (e.g., model dynamics and physics 

parameterizations, low boundary condition forcings, etc.). The predictability estimates 

from the MJO active phase event in this study may also differ from those estimated for 

other events.  

The current study only simulates a 15-day period within an MJO active phase, 

which is not long enough to estimate the predictability of MJO itself. In previous MJO 

predictability studies using global model simulations, the practical predictability 

estimates range from 15 to 45 days depending on the models and diagnostics used 

(Gottschalck et al. 2010; Vitart and Molteni 2010; Neena et al. 2014b; Hamill and Kiladis 

2014). The MJO predictability metric is usually based on the Real-time Multivariate MJO 

(RMM) index (Wheeler and Hendon 2004), which captures more the large-scale features 
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of the MJO signal. Ling et al. (2014) suggested that, when finer-scale local features are 

included, the estimated predictability becomes more limited than using a global measure. 

The predictability of MJO is also found to be dependent on its phase (Waliser et al. 2003; 

Nasuno et al. 2013; Neena et al. 2014a, b). While active phase of the MJO has better 

predictability, the models have difficulty in accurately predicting the timing of 

convection onset during its suppressed phase. As an extension of these global model MJO 

predictability studies, the current study provides a comprehensive predictability estimate 

for the multiscale CCEWs during an MJO active phase. How the predictability estimates 

change for a suppressed MJO phase may be a future research topic.  

 The selection of MJO diagnostics is also nontrivial in predictability studies. 

Waliser et al. (2009) proposed several candidate MJO diagnostics that can capture more 

small-scale details of MJO than traditional ones. Results in this paper show that 

predictability is variable-dependent. Therefore, process-oriented diagnostics (Kim et al. 

2014) that targets the tropospheric moisture or even precipitation may result in very 

different predictability estimates compared to just using dynamic variables. A longer 

regional simulation with convection-permitting resolution may be the next step to 

facilitate a comprehensive predictability study that compares different diagnostics. 

6.2 Potentials in assimilating satellite observations 

The potentials in improving the analysis and prediction of multiscale tropical 

weather systems are further evaluated in this dissertation through assimilating synthetic 

satellite-based observations using the Penn State WRF ensemble Kalman filter (EnKF) 
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data assimilation system. The observing networks investigated include the retrieved 

temperature and humidity profiles from the Advanced TIROS Operational Vertical 

Sounder (ATOVS) and Global Positioning System Radio Occultation (GPSRO), the 

atmospheric motion vectors (AMVs), infrared brightness temperature from Meteosat-7 

(Met7-Tb), and retrieved surface wind speed from the Cyclone Global Navigation 

Satellite System (CYGNSS). It is found that assimilating synthetic ATOVS 

thermodynamic profiles and AMV winds improves the accuracy of wind, temperature, 

humidity and hydrometeors for the scales larger than 200 km. The skillful forecast lead 

times can be extended by as much as 4 days for scales larger than 1000 km. Assimilation 

of synthetic Met7-Tb further improves the analysis of cloud hydrometeors even at scales 

smaller than 200 km. Assimilating synthetic CYGNSS surface winds further improves 

the low-level wind and temperature. Meanwhile, the impact from assimilating the 

current-generation synthetic GPSRO data with better vertical resolution and accuracy is 

comparable to assimilating half of the current ATOVS profiles, while a hypothetical 25-

time increase in the number of GPSRO profiles can potentially exceed the impact from 

assimilating the current network of retrieved ATOVS profiles. These results not only 

show great promises in further improving practical predictability of multiscale tropical 

weather systems but also shed lights on the need, design and cost-benefit analysis of 

current and future space-borne observing systems for better tropical weather prediction. 

The idealized OSSE provided a proof of concept of using satellite observations to 

improve tropical weather predictability. However, future real-data application will face 

more challenges. There may be non-trivial uncertainties in model dynamics, physics 

schemes, and forward operator not accounted by the current study. The actual retrieval 



156 

algorithms are not used in this study to generate ATOVS and GPSRO profiles, thus the 

simulated errors for these synthetic profiles do not account for complicated error sources 

from the retrieval processes. Thus, the idealized experiment results should be interpreted 

with these caveats in mind. The assimilation of these satellite observations in real-data 

cases needs to be tested in future studies. In this study, a limited-area domain is used and 

a perfect LBC is specified, and uncertainties from LBC and forecast model itself are not 

accounted for. Therefore, the NoDA experiment is not intended to account for all realistic 

sources of forecast errors that can impact practical predictability. Since we only focused 

on the impact of assimilating data in a limited-area domain for a selected period, one 

should be cautious in generalizing our findings. Although the 9-km horizontal grid 

spacing used in is comparable to the current operational global models, it will be 

interesting to further test the sensitivity of EnKF performance in satellite data 

assimilation to the horizontal resolution, especially for smaller-scale tropical weather 

phenomena and CCEWs. In this dissertation, we highlighted the different performance 

from ATOVS and GPSRO profiles due to their spatial coverage and resolution. A similar 

OSSE can be useful for assessing the cost-effectiveness of other future space-based 

sensors. We also believe that a more systematic direct assimilation of satellite Tb is 

needed for substituting the assimilation of retrieved profiles. The synthetic observations 

that are available evenly in space and time allow better quantification of multiscale 

analysis errors. One caveat of this assumption is that results are rather optimistic in terms 

of the information content and availability of the current satellite observing networks. On 

the other hand, although methods like the AOEI make the direct assimilation of Tb 
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possible, we believe the filter performance is still suboptimal and a better methodology in 

dealing with nonlinearity in forward operator is still much desired. 

6.3 Adaptive multiscale data assimilation methods 

Ensemble filters require covariance inflation to account for unrepresented errors, 

and covariance localization to remove sampling errors due to limited ensemble size. In 

practice, data assimilation methods are tuned to achieve best performance for the 

application to a certain weather system and using a certain type of observations. These 

tuning efforts are laborious and thus more adaptive methods are desired. The satellite 

observation assimilation experiment exposed the disadvantage of using a data 

assimilation method that cannot handle spatially inhomogeneous observations and the 

simultaneous presence of weather systems at multiple scales. For example, the tuned 

inflation factor may work best for one type of observations, but not the others; and the 

tuned localization radius may work best for a weather component at certain scale, but not 

for other scales. This motivates the development of data assimilation methods that can 

adaptive to variations in observing networks and to weather systems at different scales 

(i.e. multiscale data assimilation), which will perform better in the tropical weather 

prediction scenario. 

An Adaptive Covariance Relaxation (ACR) method was introduced and tested in 

the simplified Lorenz (1996) 40-variable system. The new method is compared to the 

Adaptive Covariance Inflation (ACI) method (Anderson 2009) that estimates a spatially 

and temporally varying inflation factor from innovation statistics using a hierarchical 
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Bayesian approach. The ACR method estimates a covariance relaxation parameter from 

the same innovation statistics. Instead of treating inflation parameters as spatially varying 

random variables as in ACI, the relaxation-to-prior-spread method provides an ensemble 

spread reduction term that serves as a spatial mask to account for an irregular observation 

network. We demonstrated that the ACR method is able to improve filter performance 

with the presence of sampling/model errors over a range of severity. Its reliability and 

ease of implementation suggest potential for future applications beyond the tropical 

weather systems. 

For covariance localization, previous studies suggest that the optimal localization 

radius depends on ensemble size, observation density and accuracy, as well as the 

correlation length scale determined by model dynamics. A comprehensive localization 

theory for multiscale dynamical systems with varying observation density remains an 

active area of research. Using a two-layer quasi-geostrophic (QG) model, this study 

systematically evaluates the sensitivity of the best Gaspari-Cohn localization radius to 

changes in model resolution, ensemble size and observing networks. Numerical 

experiment results show that the best localization radius is smaller for smaller-scale 

components of a QG flow, indicating its scale dependency. The best localization radius is 

rather insensitive to changes in model resolution, as long as the key dynamical processes 

are reasonably well represented by the low-resolution model with inflation methods that 

account for representation errors. As ensemble size decreases, the best localization radius 

shifts to smaller values. However, for nonlocal correlations between an observation and 

state variables that peak at a certain distance, decreasing localization radii further within 

this distance does not reduce analysis errors. Increasing the density of an observing 
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network has two effects that both reduce the best localization radius. First, the reduced 

observation error spectral variance further constrains prior ensembles at large scales. Less 

large-scale contribution results in a shorter overall correlation length, which favors a 

smaller localization radius. Second, a denser network provides more independent pieces 

of information, thus a smaller localization radius still allows the same number of 

observations to constrain each state variable. 

The particular type of localization used in this study is observation-space 

localization (Houtekamer and Mitchell 2001; Hamill et al. 2001), which tapers the sample 

covariance between an observation and state variables and between an observation and 

other observation priors. Model-space localization (Houtekamer and Mitchell 1998) 

directly tapers the background error covariance before the observation operator is 

applied. Although the similarity of the two approaches is proven (Sakov and Bertino 

2011; Nerger et al. 2012), these approaches can have different behavior under certain 

conditions such as small ensemble size and short localization distance (Lei and Whitaker 

2015). For example, when assimilating satellite observation impact in the vertical, 

Campbell et al. (2010) suggested that model-space localization is superior. However, Lei 

and Whitaker (2015) showed that the opposite can be true for some cases. In order to 

develop a more robust localization theory, both types of localization need to be further 

investigated, especially for cases where nonlocal observation operators involve spatial 

averaging. Correlated observation errors may also change the behavior of localization. 

The impact from observation operators and error model can also be a future research 

topic. 
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 Although the flow simulated by the QG model possesses many scales, its 

dynamical process (baroclinic instability) is relatively simple. In real atmospheric 

models, there could be multiple sources of instability at different scales. For example, the 

addition of moist convective instability may change the error growth rate at small scales, 

and the scale interaction may be more complicated. The current study motivates further 

exploration of the behavior of localization in different contexts in pursuit of a more 

generalized theory and development of adaptive multiscale localization methods.   
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