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Abstract. We developed a new method for tuning sea ice
rheology parameters, which consists of two components: a
new metric for characterising sea ice deformation patterns
and a machine learning (ML)-based approach for tuning
rheology parameters. We applied the new method to tune
the brittle Bingham–Maxwell rheology (BBM) parameterisa-
tion, which was implemented and used in the next-generation
sea ice model (neXtSIM). As a reference dataset, we used sea
ice drift and deformation observations from the RADARSAT
Geophysical Processing System (RGPS).

The metric characterises a field of sea ice deformation
with a vector of values. It includes well-established descrip-
tors such as the mean and standard deviation of deformation,
the structure–function of the spatial scaling analysis, and the
density and intersection of linear kinematic features (LKFs).
We added more descriptors to the metric that characterises
the pattern of ice deformation, including image anisotropy
and Haralick texture features. The developed metric can de-
scribe ice deformation from any model or satellite platform.

In the parameter tuning method, we first run an ensem-
ble of neXtSIM members with perturbed rheology parame-
ters and then train a machine learning model using the simu-
lated data. We provide the descriptors of ice deformation as
input to the ML model and rheology parameters as targets.
We apply the trained ML model to the descriptors computed
from RGPS observations. The developed ML-based method
is generic and can be used to tune the parameters of any
model.

We ran experiments with tens of members and found opti-
mal values for four neXtSIM BBM parameters: scaling pa-
rameter for compressive strength (P0 ≈ 5.1 kPa), cohesion
at the reference scale (cref ≈ 1.2 MPa), internal friction an-
gle tangent (µ≈ 0.7) and ice–atmosphere drag coefficient
(CA ≈ 0.00228). A neXtSIM run with the optimal parame-
terisation produces maps of sea ice deformation visually in-

distinguishable from RGPS observations. These parameters
exhibit weak interannual drift related to changes in sea ice
thickness and corresponding changes in ice deformation pat-
terns.

1 Introduction

Sea ice dynamics in highly compact ice result from the in-
teraction between surface stress on the ice supplied by wind
and ocean currents and the emerging internal stress in the
ice. In sea ice models, the internal stress is calculated by a
set of equations commonly referred to as rheology. Virtu-
ally all large-scale sea ice models used for sea ice forecast-
ing and climate modelling use the so-called viscous–plastic
(VP) rheology of Hibler (1979) or more numerically effi-
cient derivatives thereof. Additionally, the elastic–plastic–
anisotropic (EAP) approach was introduced by parameter-
ising the anisotropy of the ice stress through interactions of
diamond-shaped floes (e.g. Tsamados et al., 2013; Wilchin-
sky and Feltham, 2004). The free parameters of the VP rhe-
ology have been estimated in various traditional sensitivity
experiments (e.g. Panteleev et al., 2020, 2023), and their val-
ues are generally considered fixed by the community today.

A new branch of brittle rheologies has been proposed and
extended by Girard et al. (2011), Dansereau et al. (2016) and
Ólason et al. (2022), with the latest version, i.e. the brittle
Bingham–Maxwell (BBM) rheology, implemented and used
in the next-generation sea ice model (neXtSIM) (e.g. Rampal
et al., 2016, 2019); neXtSIM, with the BBM rheology, has
already been used in several scientific studies (e.g. Boutin
et al., 2022, 2023; Korosov et al., 2023; Regan et al., 2023)
and is used for operational sea ice forecasts (Williams et al.,
2021), and the BBM rheology has been implemented in SI3,
i.e. the sea ice component of the NEMO model (Brodeau
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et al., 2024). However, the free parameters of the BBM rhe-
ology have only been briefly explored, and their range and
relation to other model components and parameters remain
unclear.

The BBM rheology, like the other brittle rheologies, is a
damage-propagation model. It parameterises the density of
fractures (the mechanical weakness of sea ice) at the subgrid
scale with a scalar damage variable. In this framework, un-
damaged ice is fully elastic, and damage increases when the
local stresses reach the Mohr–Coulomb failure criterion. An
increase in damage results in a decrease in elasticity, simulat-
ing the fracturing of the ice. Once fractured, the ice can also
deform viscously, simulating the permanent deformation of
fractured ice. This permanent viscous deformation is limited
in convergence by resistance to ridge formation, which is also
accounted for by the BBM rheology.

As pointed out in Ólason et al. (2022), the BBM rheol-
ogy has many parameters, with some well-defined constants
and some poorly constrained. These parameters strongly and
nonlinearly impact the patterns of sea ice drift and defor-
mation simulated by the model. Visually, the differences be-
tween observed and simulated deformation fields can guide
the selection of a model parameter value. Still, such man-
ual tuning can become complicated when several parame-
ters must be considered. This work aims to develop a set of
metrics for quantitative comparison of the simulated and ob-
served sea ice deformation fields and to use these metrics for
tuning BBM parameters utilising a deep learning approach.

2 A brief introduction to the BBM rheology

The constitutive model of the BBM rheology consists of a
parallel dashpot and a friction element, connected in series
with a spring (see Fig. A1). The spring represents elastic
ice deformation, the dashpot represents viscous deformation
when the ice is fractured and the friction element represents
the resistance of broken ice to ridge formation. In a sim-
ple 1D case, these regimes can be summarised as follows
(with σ , σE and σv denoting total, elastic and viscous internal
stresses, and ε, εE and εv denoting total, elastic and viscous
deformations). Note that due to the serial connectivity, the
elastic stress always equals the total stress, i.e. σE = σ .

– When sea ice is undamaged, viscous stress is zero,
and total deformation is fully reversible (elastic): d = 0,
σv = 0 and ε = εE, where damage is a single scalar to
parameterise the fracture density at the subgrid scale.
The damage value is altered whenever the local stress
exceeds the Mohr–Coulomb failure criterion.

– When ice is damaged and diverging, the friction element
is inactive; therefore, the viscous stress equals the elas-
tic and total stress. Deformation is both elastic and vis-
cous: d > 0, σ > 0, σv = σE = σ and ε = εE+ εv.

– When ice is damaged and converging with weak inter-
nal stress, the friction element is active, viscous stress
is zero and all deformations are elastic. d > 0, Pmax <

σ < 0, σv = 0 and ε = εE, where Pmax is a compres-
sive ice strength threshold that separates the elastic be-
haviour from the elastic and stress-dissipative behaviour
of damaged sea ice.

– When ice is damaged and converging with strong in-
ternal stresses, the friction element is inactive; there-
fore, the viscous stress is equal to the elastic and to-
tal stress, and deformation is both elastic and viscous:
d > 0, σ < Pmax, σv = σ −Pmax and ε = εE+ εv.

Accounting for two components of the internal stress tensor
(normal stress, σN , and tangent stress, τ ), we can generalise
the equation for the viscous stress as follows:

σv = (1+ P̃ )σ ; (1a)

P̃ =


Pmax
σN

for σN <−Pmax,

−1 for −Pmax < σN < 0,
0 for σN > 0,

(1b)

where the threshold Pmax separates the elastic and viscoelas-
tic regimes and can be computed following the results of
Hopkins (1998) and Hibler (1979):

Pmax = P0

(
h

h0

)H
eC(1−A), (2)

where h is sea ice thickness, h0 = 1 m is a constant reference
thickness, H = 3/2 is the exponent of the compression fac-
tor, P0 is a constant reference stress, C < 0 is compaction
parameter and A is ice concentration.

The time derivative of total stress (see details in Ólason et
al., 2022) is

σ̇ = EK : ε̇−
σ

λ

(
1+ P̃ +

λḋ

1− d

)
, (3)

where elasticity is a function of damage and concentration:

E = E0(1− d)eC(1−A). (4)

K : ε̇ is the stiffness tensor operation:(K : ε̇)11
(K : ε̇)22
(K : ε̇)12

= 1
1− ν2

1 ν 0
ν 1 0
0 0 1− ν

ε̇11
ε̇22
ε̇12

 , (5)

where λ is the viscous relaxation time:

λ= λ0(1− d)α−1, (6)

with E0 (undamaged elasticity), ν (Poisson’s ratio), λ0 (un-
damaged viscous relaxation time) and α > 0 being constants.

Damage occurs in the BBM rheology whenever the sim-
ulated stress in a grid cell or element is outside the failure
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envelope (or yield curve). The failure envelope of the BBM
rheology is the Mohr–Coulomb criterion:

τ = µσN + c, (7)

where µ is the internal friction coefficient, and c is the co-
hesion. Following Bouillon and Rampal (2015), we let the
cohesion scale with model resolution as

c ∼ cref

√
lref

1x
, (8)

where1x is the distance between model node points, and cref
is the cohesion at the reference length scale, i.e. lref = 10 cm,
where the cohesion was measured to be of the order of 1 MPa
(Schulson et al., 2006).

The aforementioned parameters of the neXtSIM BBM rhe-
ology are summarised in Table 1. The ice–atmosphere drag
coefficient CA is also added to the table (although, strictly
speaking, it is not a rheology parameter) as it controls the
amount of energy transferred from wind and ocean to sea ice
and strongly affects the sea ice drift speed and, respectively,
sea ice deformation. According to Ólason et al. (2022), such
parameters as P0 and cref require tuning using satellite ob-
servations at large spatial and temporal scales. Given that the
rheology parameters nonlinearly affect the field of sea ice
deformation, a metric based on satellite-derived deformation
should be used, and the tuning should capitalise on nonlinear
methods, such as deep learning.

3 Data

We used the Lagrangian sea ice motion data from
the RADARSAT Geophysical Processing System (RGPS)
(Kwok et al., 2008) for tuning the above rheology pa-
rameters. The dataset contains trajectories of virtual buoys
tracked using pattern-matching techniques on synthetic aper-
ture radar (SAR) imagery from RADARSAT-2. The buoys
are initialised by the RGPS in mid-December in the west-
ern Arctic on a regular grid with 10 km spacing on individual
SAR images. The position of each virtual buoy is tracked
from one image to another overlapping image during the en-
tire winter season (December–May). The trajectory is termi-
nated if a virtual buoy cannot be tracked due to a loss of sim-
ilarity between SAR images or the absence of images. New
virtual buoys are initialised in the regions with a low density
of the tracked buoys that appear due to sea ice divergence
or disappearance of older buoys. The average time between
overlapping RADARSAT-2 image acquisitions is 3 d, but it
may vary from 0.5 to 10 d. Therefore, the timing of virtual
buoy positions is highly heterogeneous, even for neighbour
trajectories (see Appendix A for details).

4 Methodology

4.1 Overview of the parameter tuning algorithm

In our approach, we compute a set of descriptors that char-
acterise patterns in the fields of observed and simulated sea
ice deformation. Since the correlation between the descrip-
tors and model parameters is weak (see Fig. 6), we could not
use linear-regression-based methods (e.g. Ensemble Kalman
filter; Massonnet et al., 2014; Zhang et al., 2021; Chen et al.,
2024) and chose a deep learning (DL) approach instead. In
our DL approach for tuning the neXtSIM parameter values,
we train a neural network based on the modelling results and
apply it to actual observations. The inputs for the neural net-
work are the descriptors of the sea ice deformation, and the
target is a value of a rheological parameter.

The algorithm for DL parameter tuning can be summarised
as follows:

1. We choose the neXtSIM rheology parameters for tun-
ing and perturb their values to generate an ensemble.
Let φm,n denote the mth parameter for the nth member
of the ensemble, then φm denotes a vector of the mth
parameter for all members.

2. An ensemble of neXtSIM instances is run with the same
forcings but with different rheology parameters:

x̃n,t+1 =M(t, x̃n,t ;φn), (9)

where x̃ is the sea ice model state (sea ice concentration,
thickness, drift, etc.), M is neXtSIM and t is time.

3. Let x denote only one model variable: sea ice drift. Then
H denotes the operator for computing a sea ice defor-
mation field and a quantitative characterisation of ice
deformation pattern y:

yn,t =H(xn,t ). (10)

The size of yn,t is much smaller than the ice deforma-
tion field. For example, a daily deformation field con-
taining ∼ 1010 sea ice deformation values can be char-
acterised by a vector with ∼ 50 values.

4. Let y denote a set of yn,t vectors from all members and
all time steps. Hereafter, y represents the deformation
pattern descriptors or simply descriptors. A neural net-
work N is trained (operator T ) with the deformation
pattern descriptors (y) as input and the rheology param-
eters (φm) as the target:

Nm = T (y,φm). (11)

5. Deformation fields and deformation pattern descriptors
are computed from the observed sea ice drift xo for each
time step t :

yo
t =H(xo

t ). (12)
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Table 1. The default and optimised (see Sect. 5.4) parameters of the BBM rheology.

Parameter Symbol Default value Optimal value

Undamaged elasticity E0 5.96× 108 Pa
Undamaged viscous relaxation time λ0 1× 107 s
Reference thickness h0 1 m
Damage parameter α 5
Compaction parameter C −28
Scaling parameter for compressive strength P0 10 kPa 5.1 kPa
Cohesion at the reference scale cref 1 MPa 1.2 MPa
Poisson’s ratio ν 1/3
Internal friction angle tangent µ 0.7 0.7
Exponent of compression factor H 3/2
Ice–atmosphere drag coefficient CA 2.0× 10−3 2.28× 10−3

6. The neural network is applied to the deformation pat-
tern descriptors computed from the observed ice drift,
and averaging (〈〉) is applied for computing the optimal
value of a neXtSIM parameter:

φo
m,t =Nm(y

o
t )

φo
m = 〈φ

o
m,t 〉.

(13)

All these steps are described in detail below.

4.2 Running an ensemble of neXtSIM instances

We ran two ensembles with neXtSIM instances. In the first
experiment, the ensemble consisted of 50 members, and the
values of four parameters were perturbed using the Latin hy-
percube method (McKay et al., 1979): P0, cref, ν and µ. In
the second experiment with 70 members, the following pa-
rameters were perturbed with the same method: P0, cref, H ,
C and CA. TheH and C parameters were added as they con-
trol the influence of sea ice thickness on Pmax. See the ranges
of the perturbed parameters in Table 2.

The neXtSIM instances were run at a 10 km resolution
mesh, covering the central Arctic Ocean. Ocean forcing from
the TOPAZ4 reanalysis (Sakov et al., 2012) and atmosphere
forcing from the ERA5 reanalysis (Hersbach et al., 2020)
were used; neXtSIM exports snapshot outputs every hour
with coordinates and connectivity of the nodes of the triangu-
lar mesh and model variables for each mesh element, includ-
ing ice concentration, thickness, etc. End-to-end indexing of
the model nodes allows for the identification of similar nodes
on two snapshots and the computation of the displacement of
the node, i.e. the simulated sea ice drift.

4.3 Preprocessing of neXtSIM data

To ensure comparability of sea ice drift and deformation from
RGPS and neXtSIM, we subsample the model mesh using
the mesh of satellite observations. First, for a given set of vir-
tual RGPS buoys that have the same starting time and ending
time (i.e. a single pair of SAR images is used for ice drift

computation for these buoys), two model snapshots with the
closest simulation time are selected from the neXtSIM out-
puts. Next, only the neXtSIM nodes near the RGPS nodes
are selected on the first snapshot, and the corresponding
nodes are chosen on the second snapshot (see Fig. A3 for an
example). Nodes may disappear during simulation, or new
nodes map appear due to convergence/divergence and conse-
quent remeshing. In that case, a new Delaunay triangulation
connectivity is computed between the nodes existing on the
first and second snapshots. Further drift, deformation and de-
scriptor calculations are performed on subsets of trajectories
(same for RGPS or neXtSIM) with the same start and end
times. They are somewhat limited in space (by the intersec-
tion area of two SAR images).

4.4 Computing the descriptors of the sea ice
deformation

We compute the divergence and shear components of the de-
formation tensor and the total deformation rates using a stan-
dard method of contour integrals of velocity (Kwok, 2006)
for each element of the mesh subset mentioned above. The
following descriptors of the total deformation field are com-
puted from each subset as described in the subsections below:

1. structure–function from the spatial scaling analysis;

2. image anisotropy at different spatial scales;

3. Haralick texture features at different spatial scales;

4. length, density, and angle of intersection of linear kine-
matic features (LKFs); and

5. mean and 90th percentile of ice deformation values.

4.4.1 Spatial scaling analysis

As described in Ólason et al. (2022), the deformation is com-
puted at different spatial scales by iterative coarse-graining
(Marsan and Weiss, 2010). First, the deformation is calcu-
lated on the native resolutions of RGPS and neXtSIM (which
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Figure 1. Scheme of machine learning (ML)-based tuning of neXtSIM parameters. Blue arrows denote operations with data. Yellow squares
denote modelling data. Green squares denote observations. The operators M and H denote, respectively, neXtSIM simulations and compu-
tation of sea ice deformation descriptors.

Table 2. Ranges of parameters perturbed in two experiments.

Experiment Parameter Symbol Min Max

1 Scaling parameter for compressive strength P0 0 20 kPa
1 Cohesion at the reference scale cref 0.5 3 MPa
1 Poisson’s ratio ν 0.27 0.33
1 Internal friction angle tangent µ 0.55 0.75

2 Scaling parameter for compressive strength P0 0 15 kPa
2 Cohesion at the reference scale cref 0.2 2 MPa
2 Exponent of compression factor H 0.5 2.5
2 Compaction parameter C −50 −5
2 Ice–atmosphere drag coefficient CA 0.001 0.003

are very similar). Next, some nodes are randomly removed,
the remaining node positions are triangulated, and deforma-
tion is computed again. The last step is repeated several times
until at least three nodes remain in the subset. Information
about the area of the element used for computing deforma-
tion is preserved. This iterative procedure is repeated sev-
eral times, starting from the initial deformation field, to col-
lect sufficient deformation observations computed at differ-
ent spatial scales.

The spatial scale L is linked with the statistical moments
Q of the total deformation probability density function using
the following equation:

Llg = αN +βNQ
N
lg , (14)

where α and β are coefficients found using the least squares
method, N is the statistical moment order, and the subscript
“lg” indicates logarithmic space. The N th statistical moment
is computed asQN

lg = 〈log10((ε− ε̂)
N )〉, where ε̂ is mean to-

tal deformation and 〈〉 denotes averaging.

Coarse-graining is performed on each deformation subset
(see Sect. 3.3). Still, the α and β coefficients are computed
using deformation values (and corresponding spatial scales)
from all image pairs acquired within 3 d. Hereafter, the offset
and scale of the first statistical moment are denoted mom_1o
and mom_1s, respectively (and so on) (see Table 3).

4.4.2 Image anisotropy

Image anisotropy aI characterises localisation of image in-
tensity in a linear feature (Lehoucq et al., 2015). Anisotropy
is high (up to 1) for images of bright, thin or long lines and
is low (down to 0) for images with dark, thick or short lines.
We compute the image anisotropy as

aI = 1−

√
λ1

λ2
, (15)

where λ1 and λ1 are the eigenvalues of the inertia matrix P:
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P=
∑
box

(
X2 XY

XY Y 2

)
I , (16)

where X and Y are coordinates of the pixels of the image
with intensities I (i.e. ice deformation in our case).

In our study, anisotropy is computed on triangular mesh el-
ements as illustrated in Fig. 2. Only elements with deforma-
tion above 0.1 d−1 are used to avoid the impact of noise in sea
ice drift and deformation (Dierking et al., 2020). For comput-
ing aI in a selected element, the nearest-neighbour elements
are found, and values of deformation and the coordinates of
the centres of the elements are used in Eqs. (15) and (16)
(see Fig. 2, left column). For larger spatial scales (Fig. 2, sec-
ond, third and fourth columns), values of the deformation and
coordinates are collected from the neighbours of the neigh-
bours. After processing a single mesh subset, each element
is characterised by a vector of image anisotropy computed at
spatial scales of 10, 20, 30, 40 and 50 km. For every 3 d, a
median and 90th percentile (P90) of anisotropy from all ele-
ments of all mesh subsets are computed for each spatial scale
and denoted hereafter as a50_00, a90_00 and so on (see
Table 3).

4.4.3 Texture features

Haralick texture features (TFs) are extensively used for quan-
titative characterisation of image texture in tasks dealing
with image segmentation (Haralick et al., 1973; Zakhvatkina
et al., 2017; Park et al., 2020). A grey-level co-occurrence
matrix (GLCM) is computed at the first stage of the texture
analysis. The GLCM is a 2D distribution of the probability of
a pixel value and its neighbour value. The neighbours can be
selected at varying orientations and distances from the cen-
tral pixel. At the second stage of texture analysis, several sim-
ple algebraic formulas are applied to the GLCM to compute
statistical moments of the distribution (mean, standard devia-
tion, kurtosis, etc.) and more complex characteristics (energy,
entropy, etc.).

In our study, we compute the GLCM from the triangu-
lar mesh elements. We accumulate information about an el-
ement and all its neighbours at a given distance in all direc-
tions in one GLCM. For one-edge distance, we use the values
from three immediate neighbours; for two-edge distances,
we use the values from neighbours of neighbours (exclud-
ing the central element and duplication), and so on, as shown
in Fig. 3. We populate the GLCM with data from all elements
from all mesh subsets acquired within 3 d. The following TFs
are computed at distances of 1, 2, 4 and 8 edges using the
scikit-image Python library (van der Walt et al., 2014):
dissimilarity, homogeneity, angular second moment, energy,
correlation and contrast. For the notation, see Table 3. Za-
khvatkina et al. (2017) provides the exact formulas.

4.4.4 LKF intersection angle

Hutter et al. (2019) proposed a method for detecting linear
kinematic features (LKFs) for RGPS and model data as well
as several metrics for the characterisation of LKFs. These
metrics are successfully applied to evaluate sea ice models
in a large intercomparison experiment (Hutter and Losch,
2020). In our work, we rasterised the 3 d deformation maps
on 12.5 km resolution grids and applied the LKF detection
method of Hutter et al. (2019). The number of LKFs, average
length of LKFs and average intersection angle of conjugate
faults were used as the descriptors (see Table 3 for notation).

In addition to the descriptors listed above, the median and
P90 of divergence, convergence, and shear were computed
for each of the 3 d. Thus, a vector of descriptors constituted
49 values: median and P90 of deformation; median and P90
of image anisotropy computed at five spatial scales; six tex-
ture features at four distances; slopes and offsets of three
statistical moments; and length, number, and intersection of
LKFs. Table 3 shows the notation used hereafter in detail.
Such vectors were generated from neXtSIM simulations for
each day (using a sliding window of 3 d) from 5 Decem-
ber 2006 to 11 April 2007 for the first experiment and from
5 December 2006 to 15 May 2007 for the second experiment.
Therefore, we had 127× 50= 6350 and 161× 70= 11270
vectors for training the ML model in the first and second ex-
periments.

4.5 Selection of usable descriptors

We test the applicability of these descriptors in two steps:
on the one hand, we compare probability density functions
(PDFs) for descriptors from RGPS and neXtSIM, and on
the other hand, we use an autoencoder. In the first step, we
scale the values of descriptors from the RGPS using the
mean and standard deviation of the values from neXtSIM:
ys = (yo−µ)/σ , where yo represents all descriptors from the
RGPS, and µ and σ are the mean and standard deviation, re-
spectively, for all descriptors from neXtSIM.

The mean and standard deviation of the scaled descrip-
tors are analysed, and only the descriptors with scaled stan-
dard deviation below 3 remain for further use. Six descriptors
computed from RGPS data have significantly different values
from the neXtSIM descriptors and are expected to mislead
the training.

We trained an autoencoder (Hinton and Salakhutdinov,
2006; Vincent et al., 2008) with dense layers with 32, 16,
8, 16 and 32 neurons on the down-selected descriptors from
neXtSIM. Due to the bottleneck, the autoencoder acts as a
nonlinear principal component analysis. It can be used for
anomaly detection either in the input features (Hinton and
Salakhutdinov, 2006) or in input records (Vincent et al.,
2008). We applied the autoencoder to the down-selected
neXtSIM and RGPS descriptors and computed the root-
mean-square difference (RMSD) between the input vector
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Figure 2. Computation of image anisotropy on a mesh subset. The upper row shows a mesh subset with values of ice deformation (d−1),
and the lower row shows values of anisotropy computed at different spatial scales. The blue dot on the upper row shows the location of an
arbitrary element for which anisotropy was computed, and the red dots show the neighbours from which the deformation and coordinates
were collected.

Figure 3. Scheme of the GLCM computation. The upper left map shows a mesh subset with values of total deformation from neXtSIM. The
upper row shows the neXtSIM mesh with the central element coloured orange, and the neighbours at the one-, two-, four- and eight-edge
distances are coloured yellow. The lower row of images shows corresponding GLCMs.

and the autoencoder output for neXtSIM and the RGPS. We
excluded seven descriptors with high RMSE in RGPS data
from further processing as these are anomalous compared to
neXtSIM training data.

4.6 Training of machine learning algorithms

We trained two types of ML models with the values of de-
formation pattern descriptors as input and a single value of
a neXtSIM parameter as a target: a linear regression (LR)
model and a deep neural network (DNN). For both models,
we split the dataset from neXtSIM into two parts (85 : 15)
for training and validation. Training and validation data are
taken from different months (selected randomly). The mod-

els are trained on neXtSIM data and then applied to all RGPS
descriptors. We repeated this procedure 10 times with a new
random permutation and averaged the inference results on
the RGPS from each repetition. Eqs. (11) and (13) can be
rewritten as follows with i being the index of repetition:

Nm,i = T (yi,φm,i), (17a)
φo
m,t,i =Nm,i(y

o
t ), (17b)

φo
m = 〈φ

o
m,t,i〉. (17c)

The LR model can be formulated as

φp = ApY, (18)
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Table 3. Descriptor notation.

Description Notation

Divergence, convergence and shear (median and P90) div_50, div_90, cnv_50, cnv_90, she_50, she_90
Anisotropy median at 10, 20, 30, 40 and 50 km spatial scales a50_00, a50_05, a50_10, a50_15, a50_20
Anisotropy P90 at 10, 20, 30, 40 and 50 km spatial scales a90_00, a90_05, a90_10, a90_15, a90_20
Dissimilarity TF at a distance of 1, 2, 4 and 8 pixels dis_01, dis_02, dis_04, dis_05
Homogeneity TF at a distance of 1, 2, 4 and 8 pixels hom_01, hom_02, hom_04, hom_05
Angular second moment TF at a distance of 1, 2, 4 and 8 pixels asm_01, asm_02, asm_04, asm_05
Energy TF at a distance of 1, 2, 4 and 8 pixels ene_01, ene_02, ene_04, ene_05
Correlation TF at a distance of 1, 2, 4 and 8 pixels cor_01, cor_02, cor_04, cor_05
Contrast TF at distances of 1, 2, 4, 8 pixels con_01, con_02, con_04, con_05
First, second and third statistical moments (slope and offset) mom_1s, mom_2s, mom_3s, mom_1o, mom_2o, mom_3o
Average LKF intersection angle, length and number lkf_an, lkf_ln, lkf_no

where φp is the vector of the pth model parameter for all 3 d
periods, Y is a matrix with down-selected descriptors for all
periods and Ap is a matrix with linear regression coefficients
for that model parameter. Values in Ap are found using the
least squares method. The LR model does not require a split
into training/validation datasets. However, only the training
dataset was compared with the DNN results.

The DNN model contains three hidden dense layers with
32, 16 and 8 fully connected neurons. We found this architec-
ture optimal in a simple hyperparameter tuning experiment.
The hidden layers use the rectified linear unit (ReLU) activa-
tion function, and the output layer uses linear activation. We
trained the DNN with the Adam optimiser (Kingma and Ba,
2017), and the validation loss (computed as absolute error)
decreased.

5 Results and discussions

5.1 Sea ice deformation fields from neXtSIM

Ólason et al. (2022) identified P0 and cref as two parame-
ters of their rheology that are poorly constrained and have
a substantial visual impact on the deformation fields. Fig-
ure 4 compares total sea ice deformation derived from RGPS
(first column) and neXtSIM runs from the first experiments
with the highest and lowest values of P0 and cref. Three dates
were chosen for Fig. 4 in 2007 with low (15 February), mod-
erate (25 January) and high (3 February) deformation events.
These maps illustrate that both parameters significantly af-
fect the pattern of sea ice deformation, but their influence is
manifested differently. For example, the increase in P0 re-
sults in broader and longer LKFs with higher deformation
rates. These pronounced LKFs surround quite large floes; the
background deformation remains relatively low. The increase
in cref seems to affect the background deformation more –
at the lowest cref value, the deformation between the main
LKFs is mostly zero, and it increases with higher cref to be-
come almost spatially homogeneous. Visually, it is hard to

say which of these maps better matches the RGPS data, but
we can use the similarity of deformation descriptors in PDFs
as the metric. Nevertheless, optimisation of multiple rheol-
ogy parameters is required to find the best match.

5.2 Deformation pattern descriptors

Figure 5 shows the PDFs of the deformation pattern descrip-
tors computed from RGPS and the first neXtSIM experiment.
Comparison of the PDFs from all neXtSIM runs (blue shaded
area) with the PDFs from the run with the lowest (orange
line) or the highest (green line) P0 value illustrates that some
descriptors (a50_00, a90_05, hom_02, con_01-08,
etc.) are strongly affected by P0 – their PDF peaks are dis-
tinctly different. Other descriptors (ASM_01-08, a50_10,
etc.) have very similar PDFs without regard for the P0 param-
eter. See Fig. A4 with PDFs of all deformation descriptors for
reference.

The PDF of most RGPS-derived descriptors lies well
within the range of neXtSIM-derived descriptors and peaks
between the highest and lowest P0 PDFs (a90_05,
dis_04, mom_3o, etc.), suggesting that we can use these
descriptors for parameter tuning. Some RGPS descriptors,
however, show a completely different distribution (hom_08,
cor_08, etc.), probably due to sensitivity to noise in obser-
vations. Such descriptors are not usable for parameter train-
ing and are excluded as described in Sect. 4.5.

Figure 6 shows the correlation of all descriptors with the
values of all parameters from the first experiment. The cor-
relations are generally relatively low, except for cref, which
correlates with she_50 and cor_01 above 0.35. Results
from the second experiment are pretty similar.

Figure 7 presents the mean and standard deviation of the
RGPS-derived descriptors normalised by the mean and stan-
dard deviation of the neXtSIM descriptors. We use it at the
first step of evaluating usability and selecting the descrip-
tors. Only 43 descriptors computed from RGPS data show
a relative mean value between −1.5 and 1.5 standard devia-
tions of the neXtSIM descriptors. We exclude the following
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Figure 4. Maps of total deformation from RGPS and neXtSIM for three selected dates representing low, moderate and strong deformation
events. Each map represents a 3 d mosaic; that is, the deformation is derived from pairs of RADARSAT-1 images (and corresponding
neXtSIM snapshots) accumulated over 3 d, starting from the indicated date.

six descriptors from further processing: cor_08, a50_08,
cor_01, ene_08, dis_08 and hom_08. The standard de-
viation of the RGPS descriptor a90_00 is very large com-
pared to neXtSIM due to noise in the RGPS observations of
ice drift and deformation (see Fig. 3, left panel).

Figure 8 compares root-mean-square difference (RMSD)
between input and predictions of the autoencoder trained on
normalised neXtSIM data and applied to neXtSIM and RGPS
descriptors. The RMSD of neXtSIM-derived descriptors is
below 1, showing that even a relatively shallow autoencoder
(five layers with eight neurons in the bottleneck) can repro-
duce the variability of the descriptors well. When the same
autoencoder is applied to the RGPS data, some of the de-
scriptors (cnv_90, con_08, lkf_ln, lkf_no, a90_20,
lkf_an and a90_00) have RMSD higher than the maxi-
mum neXtSIM RMSD. High RMSD indicates abnormal val-

ues, and we exclude the corresponding descriptors from fur-
ther training.

5.3 Training and inference of ML models

Figure 9 shows the DNN training results for the first (up-
per row) and second (lower row) experiments (see also Ta-
ble 4). These scatterplots compare the actual and the pre-
dicted neXtSIM parameters from the test dataset from all 10
repetitions. In the first experiment, the DNN derives only the
P0 and cref with sufficient accuracy (correlations are 0.75 and
0.88, respectively). In the second experiment, the accuracy of
the P0 retrieval is somewhat lower (r = 0.61), while the ac-
curacy of the cref and CA retrievals is high (correlations are
0.83 and 0.75, respectively). The DNN does not show any
skill in retrieving ν or H parameters, and the accuracy of
retrieving µ and C is somewhat higher for a short range of
values. Still, overall, these four parameters cannot be derived
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Figure 5. PDFs of a few deformation descriptors for RGPS (red), all neXtSIM runs (blue), and runs with lowest (orange) or highest values
of P0. The descriptor div_90 is promising as it shows strong sensitivity to the P0 parameter, and the RGPS values vary within a similar
range. The descriptors ASM_08 and cor_08 are less usable as they are either not sensitive to P0 (i.e. ASM_08) or RGPS values are out of
the training range (i.e. cor_08).

Figure 6. Correlations between four parameters of the first experiment and the deformation descriptors.

with the machine learning approach. LR accuracy is lower
(see Table 4), and the scatterplots are not shown.

Figure 10 shows PDFs of parameters used for training
(blue line) and derived from the RGPS data using DNN (or-
ange line) and LR (green line) models in the two experiments
mentioned above (upper and lower rows). In both experi-
ments, PDFs of P0 and cref parameters have a clear peak
at ≈ 5000 kPa and ≈ 1.1 MPa, respectively. Notably, these
peaks do not correspond to the centre of the distribution of
the parameters used for training (blue line). We can observe
similar behaviour for µ and CA parameters, which also have
relatively high retrieval accuracy for the testing data. For ν,
H and C parameters, the situation is different – the accuracy
of the retrievals for the testing data was low, and the retrievals
from the RGPS data are centred on the distribution of train-
ing values.

5.4 Optimal rheology parameters for neXtSIM

Since the training accuracy was high, the peaks of PDFs of
RGPS-derived parameters are pronounced and have an offset
from the centre of the input data distribution; we can con-
clude that the values of P0, cref, µ andCA parameters derived
from RGPS can be used for optimal representation of the de-
formation patterns by neXtSIM. Table 4 lists the parameter

values derived in different experiments and the accuracy of
the model training. Note that the DNN always has higher ac-
curacy than the LR model.

We ran neXtSIM with the optimal parameter values, and
Fig. 11 shows a comparison with RGPS for the three exact
dates. We can see that the patterns of the divergence and
shear fields are very similar for neXtSIM and RGPS con-
cerning the density and orientation of LKFs, the magnitude
of deformation, and (overall) the texture of the deformation
field, thus confirming that the found parameters are indeed
optimal.

We compared the PDFs of the deformation descriptors us-
ing the Kolmogorov–Smirnov (KS) test. The KS test is ap-
plied to the PDFs of deformation descriptors computed from
neXtSIM and RGPS and is averaged over all usable descrip-
tors. The average KS test is the lowest for the neXtSIM run
with the optimal parameters (0.41) and is slightly lower than
for the default parameters (0.49).

The simulated sea ice drift was validated against the RGPS
drift by comparing the velocity vectors of each virtual buoy
from RGPS data and the matching node on the neXtSIM
mesh. The ice drift root-mean-square error for the run with
optimal parameters is 0.04 m s−1, slightly lower than for the
run with the default parameters (0.05 m s−1).
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Figure 7. Relative values of the mean (shown by bar height) and standard deviation (shown by error bars) of descriptors computed from
RGPS data. The blue colour shows the excluded descriptors.

Figure 8. RMSD between input and output of the autoencoder trained on neXtSIM data and applied to neXtSIM (orange) and RGPS (blue
or green). The blue colour shows RGPS descriptors excluded from further analysis.

Table 4. Average values of neXtSIM parameters (Param.) derived
from the RGPS. The optimal values are marked in bold.

Param. Exp. Method r Mean
training inference

P0 1 LR 0.66 4.88 kPa
P0 1 DNN 0.75 5.11 kPa
cref 1 LR 0.83 1.10 MPa
cref 1 DNN 0.88 1.21 MPa
ν 1 LR 0.36 0.305
ν 1 DNN 0.35 0.305
µ 1 LR 0.4 0.70
µ 1 DNN 0.5 0.70
P0 2 LR 0.59 4.72 kPa
P0 2 DNN 0.61 5.26 kPa
cref 2 LR 0.78 1.11 MPa
cref 2 DNN 0.83 1.19 MPa
H 2 LR 0.3 1.49
H 2 DNN 0.35 1.38
C 2 LR 0.47 −36.1
C 2 DNN 0.54 −28.7
CA 2 LR 0.69 2.32× 10−3

CA 2 NN 0.75 2.28×10−3

Sea ice thickness (SIT) from different runs was com-
pared to the monthly average ice thickness from ICESat-1 in
March 2007 (Zwally et al., 2014). SIT RMSE is the highest
(≈ 1.3 m) for the runs with Cref ≈ 0.5 MPa, but no signifi-
cant differences between the other runs were found (RMSE
≈ 1 m).

It is interesting to note similarities and differences between
the parameters used by Ólason et al. (2022). We note that the
values we get for ν, µ and H are very similar to those used
by Ólason et al. (2022). This is to be expected for ν and µ,
which are based on well-established values (see, Weiss and
Schulson, 2009; Mellor, 1986). Ólason et al. (2022) chose
H = 3/2 based on the modelling work of Hopkins (1998),
but it is unclear whether this should be valid at the geophysi-
cal scale. The accuracy of our estimate for H is low, but it is
reasonably close to H = 3/2 and within the expected range
of H ∈ [1,2].

In terms of the stress balance in the ice, CA, P0 and cref are
the most important, as they determine the momentum trans-
fer from atmosphere to ice, the resistance to ridging and the
shear strength of the ice, respectively. Interestingly, our es-
timate of CA is higher than the value used by Ólason et al.
(2022); 2.28× 10−3 vs. 2.0× 10−3, resulting in more mo-
mentum transfer from the atmosphere to the ice. At the same
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Figure 9. Comparison of the actual neXtSIM parameters (x axis) and the retrievals by the DNN. The upper row shows results from the first
experiment, and the lower row shows the second experiment. The black lines show a 1 : 1 relation.

Figure 10. PDFs of parameters used for training (blue lines) and derived from RGPS descriptors using DNN (orange) and LR (green). The
upper row shows the results from the first experiment, and the lower row shows results from the second experiment.

time, both P0 and cref are lower (5.11 vs. 10.0 kPa and 1.21
vs. 2.0 MPa, respectively). This results in an overall weaker
ice cover compared to the parameters used by Ólason et al.
(2022). It would, therefore, be reasonable to expect that our
set of parameters would lead to an overestimate of the de-
formation, but this is not the case. This underlines the sys-
tem’s complexity and indicates that there may be multiple
local minima in the parameter space, giving reasonable re-
sults. For such a system, using a systematic approach which
samples the full parameter space – similar to what we pro-
pose here – is extremely beneficial.

5.5 Temporal variations of neXtSIM parameter values

The PDFs of parameters presented in Fig. 10 are derived
from all RGPS descriptors computed in winter 2006–2007.
However, we can also apply the ML model trained on
neXtSIM data from winter 2006/07 to the RGPS data ac-
quired since 1998. We applied the autoencoder described in
Sects. 4.5 and 5.3 to the RGPS data from the earlier period
to test if the trained ML model has sufficient generalisation
skills. We could not detect any significant anomalies in these
data. Since the encoder section of the autoencoder has the
same architecture as the ML model used for inferring the
rheology parameters, we can conclude that the ML model
trained on data from winter 2006/07 is general enough to be
applied to the earlier RGPS data.
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Figure 11. Maps of divergence and shear from the neXtSIM run with default parameters (a, d), optimal parameters (b, e) and from RGPS (c,
f) for 3 February 2007.

Figure 12 shows temporal variations of the derived opti-
mal parameters on daily and interannual timescales. To create
the latter plot, we computed the descriptors from the RGPS
data for 1997–2008 and applied the DNN models trained on
neXtSIM data from 2006–2007.

On daily timescales, the derived parameters show very
high variability, reflecting frequent changes in the pattern of
sea ice deformation due to varying atmospheric forcing. The
DNN model from the first experiment is more sensitive to
these variations and even produces unphysical negative val-
ues of P0 during very high deformation at the beginning of
February 2007. Despite substantial variability, the parame-
ters are stable on the annual scale and do not show any sig-
nificant trends.

On the interannual scale, the parameters tend to change;
P0 and µ slightly decrease, while cref and AC gradually
increase. A gradual change in the observed pattern of sea
ice deformation can explain this observation. In the 1990s,

thicker ice had sparser and more pronounced LKFs (see
Fig. 4: high P0 and low cref maps). As ice became thin-
ner, more background deformation appeared, LKFs became
denser and the magnitude of deformation in LKFs slightly
decreased (see Fig. 4: low P0 and high cref maps). The impact
of internal friction angle or air drag is not shown in Fig. 4, but
the mechanisms are similar: higher Mohr–Coulomb slope al-
lows the ice to resist breakup longer and creates larger floes
(mimicking the earlier, thicker ice situation); a low air coeffi-
cient decreases ice drift and, consequently, ice deformation,
which again corresponds to an earlier period of RGPS obser-
vations.

After the first experiments, we observed the interannual
trends in the P0 and cref parameters (see Fig. 12). This leads
us to conclude that the weak dependence of these rheology
parameters on ice thickness (and potentially concentration)
indicates that the parameterisation of Pmax (see Eq. 2) re-
quires optimised tuning of H and C parameters. That was
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Figure 12. Time series of parameter values derived from RGPS for 1 year (left column) and several years (right column). Colour denotes the
experiment, and the shaded area shows the standard deviation of samples produced by 10 neural networks for the daily values (left column)
or the samples collected from the entire year (right column).

the motivation to run the second experiment and to retrieve
values of H , C and CA. Unfortunately, as Table 4 shows,
the accuracy of ML models for these parameters is not suf-
ficiently high, and we cannot derive their optimal values.
Nevertheless, accounting for these parameters in the sec-
ond experiment allowed us to train ML models that show
fewer diurnal variations and are more stable on interannual
timescales. Moreover, despite low accuracy, the ML models
predict lower values of H (1.38) and C (−28.7) than the de-
fault ones. Dedicated experiments are needed to tune these
parameters further.

6 Conclusions

We developed a new set of metrics for characterising the pat-
terns in the sea ice deformation fields. These metrics are sen-
sitive to the parameters of a sea ice model rheology and can
be used to compare simulated and observed ice deformation
for model evaluation or parameter tuning.

We developed a new method for tuning model parame-
ters using machine learning. In our process, we train an ML
model using simulated data and apply it to observations. In
our case, the inputs to the ML model are the descriptors of
sea ice deformation, and the targets are the sea ice rheol-
ogy parameters. We tested a linear regression (LR) and a
deep neural network (DNN) as ML models, and DNN always
showed higher accuracy. This method can be applied to tune
the parameters of any other model.

Using the new set of metrics and the new ML-based
method, we found values of four BBM rheology param-
eters that were poorly constrained previously: scaling pa-
rameter for compressive strength (P0 ≈ 5.1 kPa), cohesion
at the reference scale (cref ≈ 1.2 MPa), internal friction an-

gle tangent (µ≈ 0.7) and ice–atmosphere drag coefficient
(CA ≈ 0.00228).

Our experiments cover a wide range of weather and sea ice
conditions: from thin young ice in the eastern Arctic to thick
multiyear ice (MYI) near the Canadian Arctic Archipelago,
from the beginning to the end of the freezing period and
from calm days to winter storms. Presumably, the ML model
trained on such heterogeneous data is general enough to be
applied in regions with similar ice conditions, e.g. Laptev,
Kara, Barents, and Lincoln seas in the Arctic or Weddell and
Ross seas in the Antarctic. Applying neXtSIM in the Antarc-
tic shows that the model reproduces the seasonal cycle of sea
ice extent and that the BBM rheology simulates the sea ice
drift with higher accuracy (Santana et al., 2024). In other re-
gions (e.g. the marginal ice zone), where the conditions are
quite different, the sea ice concentration is lower; the ice elas-
ticity drops substantially (see Eq. 4); and the rheology is no
longer sensitive to cref, P , or other parameters.

The tuned parameters exhibit weak interannual drift re-
lated to changes in sea ice thickness and corresponding
changes in ice deformation patterns. Improving the depen-
dence on thickness and concentration in the BBM rheology
or tuning the corresponding parameters may reduce the drift
and make the rheology completely independent of the ice
thickness influence. Recent observations of ice drift and de-
formation obtained from Sentinel-1 SAR data processing are
recommended for tuning the rheology to reflect the current
situation and provide higher-accuracy forecasts.

Other parameters in our experiments (exponent of com-
pression factor, Poisson’s ratio, compaction parameter) did
not impact the pattern of sea ice deformation, or the influ-
ence of other parameters masked their impact. Therefore,
their values could not be derived using our method. Dedi-
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cated experiments are required to study the sensitivity of the
proposed metrics to these parameters and to tune their values.

Appendix A: Additional figures

Figure A1 presents a scheme of the Bingham–Maxwell rhe-
ology, where a spring is connected in series with a block,
where a dashpot and a friction element are connected in par-
allel.

Figure A2.A shows examples of RGPS trajectories span-
ning 150–180 d, and Fig. A2b shows positions of virtual
buoys detected on SAR images acquired between 1 and
5 January 2007. Points are coloured by the time of image
acquisition. Panel (c) in Fig. A2 shows the shear component
of deformation computed from the drift of buoys shown on
panel (b). The figure illustrates how heterogeneous the RGPS
Lagrangian ice motion data are in space and time.

Figure A3 shows a colocation of a neXtSIM mesh (shown
in black) and a triangulated subset from the RGPS dataset
(shown in red). The RGPS subset is created by selecting
starting and ending virtual buoy positions belonging to the
same RADARSAT-1 images separated by 3 d. All nodes on
the neXtSIM mesh within 10 km from the RGPS subset are
selected (blue) and used for the computation of deformation.

Figure A1. A schematic of the Bingham–Maxwell constitutive
model showing a dashpot and a friction element connected in paral-
lel, with both connected to a spring in series. The figure is adapted
from Ólason et al. (2022).
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Figure A2. (a) Example trajectories of virtual buoys detected on RADARSAT-1 data by the RGPS between 1 December 2006 and
15 May 2007. (b) Position of virtual buoys on SAR images acquired between 1 and 5 January 2007. Points are coloured by the starting
and ending image acquisition times, as shown in the legend. (c) Shear computed from the RADARSAT-1 image pairs shown on (b).

Figure A3. Illustration of the RGPS and neXtSIM mesh colocation. The neXtSIM mesh from one snapshot is shown in black. The RGPS
mesh created by triangulation of virtual drifters detected on a pair of RADARSAT-2 images is shown in red. The neXtSIM mesh subsampled
from the original mesh for colocation with the RGPS mesh is shown in blue.
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Figure A4. PDFs of all deformation descriptors for RGPS (red), all neXtSIM runs (blue), and runs with lowest (orange) or highest values of
P0.
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Code and data availability. The code for processing
RGPS and neXtSIM data and computing ice deforma-
tion descriptors is publicly available on GitHub and at
https://doi.org/10.5281/zenodo.13301869 (Korosov, 2024c).

The code for tuning the neXtSIM BBM parameters and prepar-
ing the figures for the paper is publicly available on GitHub and at
https://doi.org/10.5281/zenodo.13302227 (Korosov, 2024b).

Samples of neXtSIM data used in the study are publicly avail-
able on Zenodo (https://doi.org/10.5281/zenodo.13302007, Ko-
rosov, 2024a).

RGPS data are publicly available on the Alaska Satellite Facil-
ity website: https://asf.alaska.edu/datasets/daac/sea-ice-measures/
(Kwok, 2014).
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