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1 System overview 
The Pennsylvania State University (PSU) regional hybrid data assimilation system (hereafter 
referred to as the "PSU system") started as a simple proof-of-concept ensemble Kalman filter 
(EnKF) code for radar data assimilation (Snyder and Zhang 2003). It was later adopted to work 
with the Weather Research and Forecasting (WRF) model to perform regional data assimilation 
(Zhang et al. 2006; Meng and Zhang 2007; 2008 a, b). And it was further developed into an 
operational hurricane data assimilation and forecast system that assimilates both conventional and 
aircraft reconnaissance data (Zhang et al. 2009; 2011; Weng and Zhang 2012). Over the course of 
development in the past decade, the PSU system becomes more versatile. Currently, the supported 
data assimilation methods include EnKF, 3DVar and 4DVar (using WRFDA package), as well as 
hybrid methods such as E4DVar and 4DEnVar. More types of observations are supported recently, 
including the airborne Doppler radar radial velocity, and the satellite brightness temperature. 
 
The WRF model is a fully compressible, nonhydrostatic mesoscale model (Skamarock et al. 2005). 
The vertical coordinate follows the terrain using hydrostatic pressure, and the model uses an 
Arakawa C grid. Prognostic variables are the column mass of dry air, velocities, potential 
temperature, and geopotential with optional variables including turbulent kinetic energy and any 
number of scalars such as water vapor mixing ratio, rain/snow mixing ratio, and cloud water/ice 
mixing ratio. The model domain is typically configured to perform a regional simulation of the 
weather system of interest at a convection-permitting resolution. For example, the hurricane 
operational forecast setting uses three nested domain with horizontal grid spacing of 27, 9, and 3 
km. It is possible to configure the model to simulate systems across a wide range of scales. 
 
The PSU system supports a variety of ensemble and variational data assimilation methods. The 
EnKF was first proposed in the geophysical literature by Evensen (1994) as an approximation to 
the Kalman filter (1960), which provides the optimal state estimation for a linear system with 
Gaussian errors. The Kalman filter was derived under the Bayesian estimation framework, it 
combines information from model forecast and available observations and their respective 
uncertainties. The EnKF uses an ensemble of model forecasts to characterize a flow-dependent 
background error covariance, which helps better propagate observed information in space and time 
to those variables that are unobserved. In geoscience applications, the EnKF typically faces the 
challenge of limited ensemble size comparing to dimension of the state, which will cause sampling 
noises in the estimated error covariance and requires ad hoc localization techniques to reduce the 
dimensionality of the analysis. Inflation of the ensemble spread is often needed to account for 
unrepresented error sources in the system. A comprehensive review of the development of EnKF 
is provided by Houtekamer and Zhang (2015). 
 
More recently, hybrid data assimilation methods are proposed to combine the merit from both 
ensemble and variational methods. Using WRFDA package as variational component, the PSU 
system now fully support the state-of-the-art hybrid methods, such as the E4DVar and the 4DEnVar. 
The PSU system uses bash control scripts to coordinate the workflow and I/O of data among 
modules. This document provides a detailed technical description of the PSU system. 
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2 Basic EnKF algorithms 

2.1 Ensemble Kalman Filter 
Consider assimilating observations 𝑦" to update a model state x with n variables. The Bayesian 
framework for data assimilation combines the information from a prior distribution for x and 
likelihood function of x given the observation 𝑦" and arrives at an updated posterior distribution 
for x according to the Bayes’ Theorem. The Kalman filter assumes the involved probability 
distributions are all Gaussian (normal distribution) characterized by their mean and covariance 
(Fig. 2.1).  

 
Fig. 2.1. A schematic of probability distributions during Bayesian data assimilation. The prior 
distribution is updated to posterior distribution by the observation likelihood function. 

 
Ensemble Kalman filter (EnKF) uses a Monte Carlo sampling strategy to estimate the mean and 
covariance of prior distribution 𝑁$𝑥&, 𝑃&)  using an ensemble. Let 𝑥*&  be the prior ensemble 
members for k = 1, 2, …, N, where N is the ensemble size. The prior ensemble mean is found by  

   𝑥& = ,
-
∑ 𝑥*&-
*/, ,      (2.1) 

and the prior error covariance can be calculated as  

   𝑃& = 𝑋𝑋1,       (2.2) 

where 𝑋 = ,
√-3,

$𝑥,4&, 𝑥5,4&. . . , 𝑥-4&)  is the ensemble perturbation matrix. The ensemble 

perturbations are calculated as 𝑥*4& = 𝑥*& − 𝑥
&,	for k = 1, 2, …, N.  

The observation 𝑦"  is a vector containing p observations, whose error covariance is R. The 
nonlinear observation operator that converts model states to observations is denoted as ℎ(⋅), and 
H is the corresponding tangent linear observation operator. The EnKF update equation for 
ensemble mean can be written as 

   𝑥= = 𝑥& + 𝐾@𝑦" − ℎ$𝑥&)A,     (2.3) 

where K is the Kalman gain 

   𝐾 = 𝑃&𝐻1(𝐻𝑃&𝐻1 + 𝑅)3,.     (2.4) 
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The ensemble perturbations are updated as 

   𝑥*4= = 𝑥*4& + 𝐾@𝑦*4" − 𝐻𝑥*4&A, for k = 1, 2, …, N,  (2.5) 

so that the posterior error covariance satisfies 

   𝑃= = (𝐼 − 𝐾𝐻)𝑃&.      (2.6) 
This is the formulation of EnKF with perturbed observation (Evensen 1994; Houtekamer and 
Mitchell 1998), in which 𝑦*4" is randomly drawn from the distribution 𝑁(0, 𝑅) for each member k. 

2.2 Serial EnKF with square root modification 
The simultaneous assimilation of all observations requires the calculation of a matrix inversion 
(𝐻𝑃&𝐻1 + 𝑅)3, that can be costly. For the PSU system, we employ a serial algorithm instead. 
Instead of solving (2.3) and (2.5) in one step, observations (j = 1, 2, …, p) are assimilated serially, 
and the state x is updated iteratively one observation at a time. The following is a pseudo-code for 
the serial EnKF: 

Table 2.1. Pseudo code of serial EnKF with perturbed observation. 

𝑥*
(,) = 𝑥*&, for k = 1, 2, …, N    

for j = 1, 2, …, p 
 𝑥(F) = ,

-
∑ 𝑥*

(F)-
*/,        (2.7) 

 for k = 1, 2, …, N 
  𝑥4*

(F) = 𝑥*
(F) − 𝑥(F)      (2.8) 

  𝑦F,*
(F) = ℎF G𝑥*

(F)H      (2.9) 
 end 
 𝑦F

(F) = ,
-
∑ 𝑦F,*

(F)-
*/,        (2.10) 

 for k = 1, 2, …, N 
  𝑦4F,*

(F) = 𝑦F,*
(F) − 𝑦F

(F)      (2.11) 
 end 
 var$𝑦F") = 𝑅FF       (2.12) 

 var G𝑦F
(F)H = 𝐻F𝑃(F)𝐻F1 =

,
-3,

∑ G𝑦4F,*
(F)H

5
-
*/,    (2.13) 

 cov G𝑥(F), 𝑦F
(F)H = 𝑃(F)𝐻F1 =

,
-3,

∑ G𝑥4*
(F) ⋅ 𝑦4F,*

(F)H-
*/,   (2.14) 

 𝐾F =
NOPGQ(R),SR

(R)H

PTUGSR
VHWPTUGSR

(R)H
       (2.15) 

 𝑥(FW,) = 𝑥(F) + 𝐾F G𝑦F" − 𝑦F
(F)H     (2.16) 

 for k = 1, 2, …, N 
  𝑥′*

(FW,) = 𝑥′*
(F) + 𝐾F G𝑦′F,*" − 𝑦′F,*

(F)H    (2.17) 

  𝑥*
(FW,) = 𝑥(FW,) + 𝑥′*

(FW,) 
 end 
end 
𝑥*= = 𝑥*

(YW,). 
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Note that ℎF is the nonlinear observation operator for the j-th observation; 𝐻F denotes the j-th row 
of H; superscript (j) denotes the state of a variable at the j-th iteration, namely after the assimilation 
of the previous j-1 observations. By the end of observation loop the state x has been updated p 
times and is output as the analysis. When observation errors are uncorrelated (R is a diagonal 
matrix), the serial algorithm is equivalent to the original simultaneous algorithm. Appendix A 
provides a proof of such equivalence. 
The perturbed observation EnKF is a stochastic formulation, in which random sampling of the 
observation error 𝑦′F,*"  may introduce sampling noises to the filter solution. For the PSU system, 
we use a deterministic formulation of EnKF. In (2.17), we do not draw random perturbation to 
characterize observation error, a zero is used instead of 𝑦′F,*" . Whitaker and Hamill (2002) showed 
that the lack of observation error perturbations in (2.17) will cause the analysis ensemble to be 
under-dispersive, and thus requires a modification term to compensate the missing error variance. 
(2.17) becomes 

   𝑥′*
(FW,) = 𝑥′*

(F) + 𝜙𝐾F G−𝑦′F,*
(F)H,    (2.18) 

where  

   𝜙 = [1 + ]
PTUGSR

VH

PTUGSR
(R)HWPTUGSR

VH
^

3,

    (2.19) 

is the modification term. The resulting algorithm is call an ensemble square root filter (EnSRF).  
 

2.3 Covariance Localization and Inflation 
The dimension of model state, n, is typically much larger than the ensemble size N. The limited 
ensemble size causes the sample estimated prior error covariance 𝑃&  to be rank deficient, and 
results in the covariance between observation and model state, 𝑐𝑜𝑣$𝑥(F), 𝑦(F)), to be contaminated 
with sampling noises when they are at a larger distance. Localizing the impact from distant 
observations will remedy the negative impact from these sampling noises (Hamill et al. 2001; 
Houtekamer and Mitchell 2001). In update equations (2.16) and (2.17), the Kalman gain is replace 
with 𝜌F ∘ 𝐾F, where the circle denotes an element-wise (Schur) product, and 𝜌F is a localization 
function that maximizes at the j-th observation location and tapers to zero at the cutoff distance. A 
typical choice of localization function is the Gaspari and Cohn (1999) fifth-order polynomial, 
which is similar to the shape of a Gaussian yet has compact support. The cutoff distance is also 
referred as the radius of influence (ROI).  
When extra error sources (model error, representation error, etc.) in the system are not well 
accounted for in EnKF, the filter solution (ensemble mean) can deviate from the truth yet the 
ensemble spread keeps decreasing. This phenomenon is called “filter divergence”, where filter 
eventually ignores all observation because of the collapse of ensemble spread. To prevent this, one 
can inflate the ensemble spread every cycle either before or after the assimilation step. 
Multiplicative inflation (Anderson and Anderson 1999) inflate the ensemble spread by multiplying 
an inflation factor, 
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   𝑥*4 ← 𝜆𝑥*4 ,      (2.20) 
and additive inflation (Mitchell and Houtekamer 2000) draws a random noise from a given error 
distribution and add it to the ensemble perturbations. Covariance relaxation (Zhang et al. 2004) is 
another form of inflation by mixing the analysis ensemble perturbations with the prior ones that 
are larger, 

  𝑥*4= ← (1 − 𝛼)𝑥*4= + 𝛼𝑥*4&.     (2.21) 

Another option for relaxation is the relax-to-prior-spread method proposed by Whitaker and 
Hamill (2012), in which the analysis ensemble is inflated using a multiplicative factor which is in 
between prior and posterior spread, 𝑥*4= ← g𝛼 hi3hj

hj
+ 1k 𝑥*4=, where 𝜎& and 𝜎= are the prior and 

posterior ensemble spread, respectively. 
 

2.4 Observation prior calculation 
The calculation of observation priors in (2.9) can be very costly if the h operator is complicated, 
such as the Radiative Transfer Model (RTM) for satellite observations. To avoid this computational 
cost, we calculate the observation priors before the assimilation step, and update them during the 
assimilation loop. 
Table 2.2 is a pseudo-code for the final algorithm with all the aforementioned modifications that 
is used in the EnKF component of the PSU system. (2.24) – (2.26) calculate the initial values of 
observation priors and store them as ensemble mean and perturbations similar to the way state 
variables are initialized. During the assimilation step, a group of update equations (2.33) – (2.36) 
are added for these observation values 𝑦m and 𝑦m,*4  corresponding to the updated state variables. 
These equations are derived by left multiplying the update equations for 𝑥 and 𝑥*4  (2.27) – (2.32) 
with 𝐻m.  
Note that 𝜙 is the square root modification term as in (2.19), 𝜌F is the localization function for the 
j-th observation, and 𝜌mF is an element in 𝜌F that depends on the distance of the l-th observation to 
the j-th observation.  
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Table 2.2. Pseudo code of the serial EnSRF algorithm used in the PSU system. 
𝑥*
(,) = 𝑥*&, for k = 1, 2, …, N 
𝑥(,) = ,

-
∑ 𝑥*

(,)-
*/,         (2.22) 

for k = 1, 2, …, N 
 𝑥4*

(,) = 𝑥*
(,) − 𝑥(,)       (2.23) 

end 
for j = 1, 2, …, p 
 for k = 1, 2, …, N 
  𝑦F,*

(,) = ℎFG𝑥*
(,)H      (2.24) 

 end 
 𝑦F

(,) = ,
-
∑ 𝑦F,*

(,)-
*/,        (2.25) 

 for k = 1, 2, …, N 
  𝑦4F,*

(,) = 𝑦F,*
(,) − 𝑦F

(,)      (2.26) 
 end 
end 
for j = 1, 2, …, p 
 var$𝑦F") = 𝑅FF       (2.27) 

 var G𝑦F
(F)H = 𝐻F𝑃(F)𝐻F1 =

,
-3,

∑ G𝑦4F,*
(F)H

5
-
*/,    (2.28) 

 cov G𝑥(F), 𝑦F
(F)H = 𝑃(F)𝐻F1 =

,
-3,

∑ G𝑥4*
(F) ⋅ 𝑦4F,*

(F)H-
*/,   (2.29) 

 𝐾F =
NOPGQ(R),SR

(R)H

PTUGSR
VHWPTUGSR

(R)H
       (2.30) 

 𝑥(FW,) = 𝑥(F) + 𝜌F ∘ 𝐾F G𝑦F" − 𝑦F
(F)H     (2.31) 

 for k = 1, 2, …, N 
  𝑥′*

(FW,) = 𝑥′*
(F) + 𝜙𝜌F ∘ 𝐾F G−𝑦′F,*

(F)H    (2.32) 
 end 
 for l = 1, 2, …, p 
  cov G𝑦m

(F), 𝑦F
(F)H = 𝐻m𝑃(F)𝐻F1 =

,
-3,

∑ G𝑦4m,*
(F) ⋅ 𝑦4F,*

(F)H-
*/,  (2.33) 

  𝐻m𝐾F =
NOPGSn

(R),SR
(R)H

PTUGSR
VHWPTUGSR

(R)H
     (2.34) 

  𝑦m
(FW,) = 𝑦m

(F) + 𝜌mF𝐻m𝐾F G𝑦F" − 𝑦F
(F)H    (2.35) 

  for k = 1, 2, …, N 
   𝑦4m,*

(FW,) = 𝑦4m,*
(F) + 𝜙𝜌mF𝐻m𝐾F G−𝑦4F,*

(F)H  (2.36) 
  end 
 end 
end 
𝑥*= = 𝑥(YW,) + 𝑥*

4(YW,), for k = 1, 2, ..., N 
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2.5 Parallelization of the EnKF algorithm 
Here we outline the basic parallelization strategy employed in the PSU system. Table 3.1 provides 
a list of variable names used in pseudo code (2.22) – (2.36) and in the actual Fortran code. For 
more details of the Fortran code, please refer to the next section. 

The model state x is typically considered an 𝑛 × 1 vector in pseudo code formulation. However, 
when applying the algorithm to a real atmospheric model, it is necessary to work with the original 
model dimensions (zonal, meridional, vertical directions, and number of variables) instead of 
squeezing them into a long one-dimensional vector. The WRF model state space is defined as 
x(ix+1,jx+1,kx+1,nv,nens+1), where ix, jx, and kx are the sizes of the model grid in zonal, 
meridional, and vertical directions, respectively. The staggered model grid requires one additional 
grid point in each direction to accommodate all variables. nv is the number of model variables. 
nens is the size of ensemble. The 1:nens locations store the ensemble perturbations 𝑥*4  in (2.23), 
and the nens+1 location stores the ensemble mean 𝑥 in (2.22). To parallelize the EnKF algorithm, 
we decompose the work load in the 1:nens+1 dimension, as well as the model grid into slabs in 
the horizontal directions 1:ix and 1:jx. Such decomposition will reduce both the computation 
and storage load on each processor.  
The Message Passing Interface (MPI) library is utilized to perform parallel computation.  After 
initialization, the MPI provides each processor a unique rank from 0 to nprocs-1, called proc_id, 
where nprocs is the total number of processors. comm is a communicator that coordinates inter-
processor data transfer among these processors. Let nicpu, njcpu, and nmcpu be the number of 
processors assigned to collectively store the data in 1:ix, 1:jx, and 1:nens+1 dimensions, 
respectively. They shall satisfy 
  nicpu*njcpu*nmcpu=nprocs 
 

The global communicator comm is then split into s_comm that handles inter-processor operations 
among different slabs of the domain, and g_comm that handles operations among different 
members. The processors are also divided into subgroups according the particular domain slab and 
members they store as follows. 
  gid=int(proc_id/(nicpu*njcpu)) 
  sid=mod(proc_id,nicpu*njcpu) 
  call MPI_Comm_split(comm,gid,sid,s_comm,ierr) 
  call MPI_Comm_split(comm,sid,gid,g_comm,ierr) 
 

The processors that store the same domain slab will share the same sid, and those that store the 
same members will share the same gid. The data structure of model state x stored on each 
processor becomes x(ni,nj,nk,nv,nm), where  
  ni=int((ix+1)/nicpu)+1 
  nj=int((jx+1)/njcpu)+1 
  nk=kx+1 
  nm=int((nens+1)/nmcpu)+1 
 

And the start and end indices for each domain slab can be calculated as follows.  
  iid=mod(sid,nicpu) 
  jid=int(sid/nicpu) 
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  istart=iid*ni+1 
  iend=(iid+1)*ni 
  jstart=jid*nj+1 
  jend=(jid+1)*nj 
  if(iid==(nicpu-1)) iend=ix+1 
  if(jid==(njcpu-1)) jend=jx+1 
 

A schematic of decomposing along one dimension is shown in Fig. 2.2 for the case of 3 processors. 
Note that the last processor will store fewer grid points if the total number of grid points cannot be 
exactly divided by the number of processors. For better parallel efficiency, one should design 
nicpu, njcpu, and nmcpu such that the last slab is as large as the previous ones as possible. 

 
Fig. 2.2. A schematic of decomposing a mesh grid of size 20 to be 
stored on 3 processors. Each processor will store 7 grid points, except 
that the third processor (id=2) will store only 6 grid points. 

Some inter-processor communication is required to complete the calculation along the ensemble 
members dimension. For example, the calculation of ensemble mean in (2.22) is done as follows 
  Call MPI_Allreduce(sum(x,5), xm, ni*nj*nk*nv, & 
     MPI_REAL, MPI_SUM, g_comm, ierr) 
  xm=xm/real(nens) 
 
For processors with the same sid, the members stored locally on each processor is first summed 
as sum(x,5), then summed together using MPI_Allreduce with MPI_SUM operation. The end 
result xm is the sum of all members, which is divided by nens to get ensemble mean. Similarly, 
the ensemble-estimated error variances and covariances in (2.28) and (2.29) can be calculated 
using MPI_Allreduce among the g_comm processors as well.  
During the calculation of Kalman gain in (2.30), processors with different sid need to 
communicate to gather all required information. Fig. 2.3 shows an example of domain 
decomposition when nicpu = 2 and njcpu = 2. The model domain is decomposed into 4 slabs 
with sid = 0, 1, 2, and 3. The blue box shows the update zone associated with an observation 
located in slab 3. The update zone is centered at the observation and its size is defined by the ROI. 
To speed up the calculation of Kalman gain, the update zone is also decomposed into 4 slabs for 
each sid to compute simultaneously. In this example, the update zone slab 0 would require small 
pieces from all 4 domain slabs to finish calculation; update zone slab 2 would require domain slabs 
2 and 3; update zone slab 1 would require domain slabs 1 and 3; and update zone slab 3 is the only 
one that does not require any inter-processor communication. 
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Fig. 2.3. A sample domain decomposing schematic for the 
case of nicpu=2 and njcpu=2. Numbers indicate the sid 
of a processor. Black box indicates the domain slabs stored 
on each processor, and the blue box indicates the Kalman 
gain centered at the observation location with size 
2*ROI+1 in both directions, which is also decomposed 
into 4 slabs.  

 

 
Sending and receiving using MPI_Send and MPI_Recv need to be choreographed to prevent 
deadlocks, which are caused by a pair of processors trying to receive from each other and cannot 
proceed to the code that actually send out the message. Table 2.3 shows the sending and receiving 
sequence that will avoid such deadlocks. A pseudo code shared by all sid to perform this sequence 
is as follows. 

 for is = 0,nicpu*njcpu-1 
  find slab indices  
  if (sid>is)  
   MPI_Recv slab from processor is 
  end 
 end 
 for i = 1,nicpu*njcpu 
  is = mod(sid+i, nicpu*njcpu) 
  find slab indices 
  if (sid==i) 
   get slab locally 
  else  
   MPI_Send slab to processor is 
  end 
 end 
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 for is = 0,nicpu*njcpu-1 
  find slab indices  
  if (sid<is)  
   MPI_Recv slab from processor is 
  end 
 end 

 
 
The same sequence will take place again when the calculation of analysis increment in (2.31) and 
(2.32) is complete and needs to be written back to the x slabs.  
 

Table 2.3. A sample sending (=>) and receiving (<=) sequence among 4 
processors in s_comm during the gathering of domain slabs. From top to 
bottom is what happens as a result of running the pseudo code for each 
processor sid.  

Processor 0 Processor 1 Processor 2 Processor 3 
 <= 0 <= 0 <= 0 
=> 1  <= 1 <= 1 
=> 2 => 2  <= 2 
=> 3 => 3 => 3  
 => 0 => 0 => 0 
<= 1  => 1 => 1 
<= 2 <= 2  => 2 
<= 3 <= 3 <= 3  

 
Note that the serial EnKF algorithm has an iterative assimilation loop over the number of 
observations (2.27) – (2.36). The iterative algorithm does not allow the assimilation of nearby 
observations to be parallelized, because the assimilation of the j-th observation would require the 
state 𝑥(F3,)  which is a result from assimilating the previous (j-1)-th observation. The current 
parallelized algorithm scales well when number of observations is relatively small and ROIs are 
large. When a large amount of observations with relatively small ROIs are used, the current 
parallelization strategy is not optimal. However, one can potential improve the efficiency by 
decomposing the observation grid into slabs whose update zones do not overlap and thus can be 
assimilated simultaneously (such as the algorithm in Wang et al. 2013).  
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2.6 Prior and posterior innovation statistics 
The observation space innovation statistics (Desroziers et al. 2005) is a useful tool to provide a 
consistency check for the filter. From (2.25), a copy of observation prior mean, 𝑦& = 𝑦(,) can be 
saved before assimilation. After the observation loop is complete, the observations 𝑦"  and the 
observation posterior mean 𝑦= = 𝑦(YW,)  from (2.35) are also saved for the calculation of 
innovation statistics.  

Consider innovation vectors 𝑑"3& = 𝑦" − 𝑦& , 𝑑"3= = 𝑦" − 𝑦= , and 𝑑=3& = 𝑦= − 𝑦&  collected 
during a data assimilation cycle. The innovation statistics are written as follows. 

  𝔼[𝑑"3&(𝑑"3&)1] = 𝐻𝑃&𝐻1 + 𝑅.      (2.37) 

  𝔼[𝑑=3&(𝑑"3&)1] = 𝐻𝑃&𝐻1.       (2.38) 

  𝔼[𝑑"3=(𝑑"3&)1] = 𝑅.       (2.39) 

  𝔼[𝑑=3&(𝑑"3=)1] = 𝐻𝑃=𝐻1.       (2.40) 

 
One can calculate a consistency ratio,  

  CR = ]wUG𝔼gxVyi$xVyi)
z
kH3wU({)

wU$|}i|z)
,      (2.41) 

to check the consistency of prior ensemble spread. If CR is larger than 1, the ensemble is under-
dispersive and requires some inflation. Similar consistency ratios can also be defined for posterior 
ensemble spread as well as for the observation errors. Several studies have documented adaptive 
inflation methods that estimate the optimal amount of inflation utilizing the innovation statistics 
(Wang and Bishop 2003; Anderson 2007, 2009; Li et al. 2009; Miyoshi 2011; Ying and Zhang 
2015).  
 
 

2.7 Treatment of non-negative state variables 
In EnKF, the background errors associated with state variables are assumed to be Gaussian random 
processes (white noise). While this assumption holds for some model variables, it is problematic 
to update non-negative state variables those errors do not follow a Gaussian distribution. For 
example, when updating the hydrometeor mixing ratio Q, say most of the members have 𝑄 = 0, 
and only a few members have 𝑄 > 0. The prior ensemble mean is apparently 𝑄 > 0. When the 
observation is 𝑄 = 0 , the ensemble mean will be reduced during data assimilation, and the 
members with 𝑄 = 0 will have to adjust toward negative values as a result of shifting of the 
ensemble mean. We apply an ad hoc adjustment to the posterior ensemble to correct the negative 
values. First, the negative members are set back to zero. Then, the positive members are shifted 
with an even amount so that the ensemble mean is unchanged. Fig. 2.4 shows a schematic of this 
process. 
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Fig. 2.4. Schematics showing adjustment of negative posterior state hydrometeors 
back to zero while preserving the posterior ensemble mean. 
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3 System workflow and components 
The PSU system can perform hybrid ensemble and variational data assimilation with a 
combination of the EnKF and WRFDA code packages. Fig. 3.1 shows the schematics of data 
assimilation workflows that the PSU system is capable of. Control scripts written in bash helps 
coordinate different modules and monitor job running status.  

3.1 Code and working directories 
 
Table 3.1. Contents of the PSU system code directory $SCRIPT_DIR. 

config/ Stores the configuration files. 
 

 Irma_EnKF A sample configuration file for the Irma (2017) test case 
using EnKF to assimilate conventional and satellite 
observations. 
 

EnKF/src/ EnKF source code directory. See section 3.4 for more 
details of each code component. 
 

WRF_BC_v2.1_alltime/src Code package to update and/or perturb lateral boundary 
condition at the correct time slot in the wrfbdy file. 
 

gen_be A collection of control scripts to run gen_be code from 
the WRFDA package, in preparation for perturbing IC 
with the CV5 option. 
 

module_*.sh Control scripts to run a certain module in the system.  
 

run_*.sh Top-level scripts to run experiments.  
 

util* Utility scripts and functions. 
 

namelist_*.sh Scripts that generate namelist files for a certain 
component according to the input variables. 
 

… See section 3.2 for more details about other miscellaneous 
scripts and tools. 
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Fig. 3.1. PSU System workflows for (a) EnKF, (b) 4DVar, (c) E4DVar, and (d) 4DEnVar. The first spin up 
cycle from DATE_START to DATE and two data assimilation cycles at DATE and NEXT_DATE are shown. 
OBS_WIN_MIN and OBS_WIN_MAX are the time offsets for the window in which observations are 
assimilated for a cycle. Color marker arrows are associated with WRF forecast steps, and black thin arrows 
indicate file I/O for a certain module. 
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Table 3.2. Contents of the runtime working directory $WORK_DIR. 

rc/ 
|-------- $DATE/ 
| 
|---------------- wrfinput_$dm 
|---------------- wrfbdy_$dm 
| 
fc/ 
|-------- $DATE/ 
| 
|---------------- wrfinput_$dm_$id 
| 
| 
|---------------- wrfinput_$dm_<$NEXTDATE>_$id 
| 
| 
| 
|-------- wrfbdy_$dm_$id 
|-------- wrflowinp_$dm_$id 
| 
|-------- wrfbdy_$dm 
|-------- wrflowinp_$dm 
| 
run/ 
|--------  $DATE/ 
| 
|---------------- <module>/ 
| 
|------------------------- stat 
| 
| 
|------------------------- run_<module>.sh 
| 
|------------------------- … 
| 
output/ 
|-------- $DATE/ 
|---------------- wrfout_$dm_<$date>_$id 
 

Output from real.exe at each 
cycle. 
 
IC and LBC for domain $dm 
 
 
Input/output from the data 
assimilation steps at each cycle. 
 
IC files valid at $DATE for each 
member $id (the analyses) 
 
IC files valid at $NEXTDATE for 
member $id (the forecast, prior 
ensemble for next cycle). 
 
BC files if they are perturbed for 
each member $id 
 
BC files if they are shared by the 
ensemble. 
 
 
 
Runtime directory for module at 
each cycle 
 
Contains status of the module, 
“running/complete/error” 
 
Job submission script.1 
 
Other runtime files. 
 
 
 
Output from WRF forecast steps 
for member $id and at forecast 
time $date. 

 
1A separate submission script for each module is generated if $JOB_SUBMIT_MODE == 2. 
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Table 3.3. A list of the external packages required by the PSU system. 

WRF, WPS WRF forecast model and the preprocessing WPS package.  
 

WRFDA WRF data assimilation package. The 3DVar with RANDOMCV 
mode is required by module_perturb_ic to generate initial 
ensemble for EnKF; 3/4Dvar is required when running hybrid 
data assimilation. Note that 4DVar will require WRFPLUS and 
WRFDA compiled with 4DVar options. 
 

MULTI_INC Some Fortran programs written for manipulating WRF output 
files (decimation, interpolation, etc.) during the incremental 
4DVar step. 
 

NETCDF Software package to handle NETCDF file I/O. 
 

MPI Message Passing Interface software package that provides 
parallel computation subroutines. Compatible packages include 
mpich2, mvapich2, and intel impi. 
 

CRTM Community Radiative Transfer Model library, required by EnKF 
and WRFDA when assimilating satellite radiance observations. 
 

 
 
 

3.2 Control scripts 
 
run_cycle.sh 

Top-level run script for cycling data assimilation. 
The batch queue system headers, such as #PBS -l walltime=1:00:00, are required if 
submitting this script to the queue as one job ($JOB_SUBMIT_MODE==1). See the instructions 
from the HPC system for how to write these headers. 
cd $WORK/PSU_WRF_EnKF changes directory to the $SCRIPT_DIR. Then, the configuration 
file $CONFIG_FILE is defined and loaded. $total_ntasks is the total number of processors 
allocated for this batch job. 
What follows is the time loop for performing cycling data assimilation. The experiment period 
is defined as $DATE_START to $DATE_END. $DATE denotes the time of the current cycle, while 
$PREVDATE and $NEXTDATE denote the time of previous and next cycle, respectively. The first 
cycle is from $DATE_START to $DATE_CYCLE_START, which is typically longer to allow the 
initial ensemble to spin up. The cycling data assimilation will take place between 
$DATE_CYCLE_START and $DATE_CYCLE_END. The time interval between cycles is 
$CYCLE_PERIOD, and the lateral boundary condition is available every $LBC_INTERVAL 
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minutes. Observations are available within the window from $OBS_WIN_MIN to 
$OBS_WIN_MAX. Typically, $DATE+$OBS_WIN_MAX will equal $NEXTDATE+$OBS_WIN_MIN. 
At each cycle, the control script for each module is called and run in the background (with &). 
In the control script of each module, the completion status is obtained from a stat file in its 
runtime directory. If its status is “completed”, the current module will be skipped. Otherwise, 
it will check dependency, wait for prerequisite modules to complete, and then run the 
following scripts. These stat files allow easy restart of an experiment if a batch job doesn’t 
complete successfully, just resubmit run_cycle.sh and it will scan over the completed 
modules and pick up where it left off. 

 

module_icbc.sh 
Prepares the initial and boundary conditions by running geogrid.exe, ungrib.exe, 
metgrid.exe, and real.exe from the WPS code package. 
Typically, at $DATE_START, the analyses from global data assimilation system (e.g., from the 
GFS) are used as input files to create IC and BC files. However, it is sometimes not necessary 
to run module_icbc.sh for every cycle, for example, when the BCs are not perturbed for the 
ensemble members and a single wrfbdy file that contain all the time steps is stored in fc/ to 
be shared among all members. For realtime application, module_icbc.sh is typically run 
every cycle as the global analyses become available. 

 

module_perturb_ic.sh 
Perturbs the initial condition to generate the initial ensemble. 
The initial ensemble is generated by running 3DVAR in RANDOMCV mode. One can either 
use the CV3 or the CV5 background error covariance options (NMC method; Barker et al. 
2004). If CV3 option is chosen, the be.dat calculated from global model climatology will be 
used. If CV5 option is chosen, one needs to prepare the be.dat file offline using the gen_be 
package. The perturbed variables include horizontal wind components, potential temperature, 
geopotential, and mixing ratio for water vapor, and their error statistics are defined by the 
climatological background error covariance. Other prognostic variables such as vertical 
velocity and hydrometeor mixing ratios are not perturbed.  
If the boundary condition wrfbdy will be perturbed as well for the ensemble, a total of 100 
perturbations will be generated for IC, and random draws of these perturbations will later be 
used by update_wrf_bc.exe to perturb the BC in a consistent fashion. 

 
module_obsproc.sh 

Prepares observation data files for EnKF using obsproc.exe from WRFDA. 
The obsproc.exe program takes input data in LITTLE_R format. Currently, the LITTLE_R 
formatted GTS/MADIS observations prepared by NCAR are included. BUFR formatted data 
can also be included when their decoders are installed. For special data sources such as from 
field campaigns (PREDICT, DYNAMO, etc.), one can convert their data into LITTLE_R 
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format, and concatenate the text data file with other data sources all together in the obs.raw 
file, which is the input for obsproc.exe. Observations are logged in files every 
$obs_interval hours. To prevent occasional missing of observations that are logged with 
time lag (files with slightly later time stamp), a wider observation time window is applied 
when gathering the files to form obs.raw.  
The output observation file is called obs_gts_<time string>.3DVAR. These files will later 
be linked in EnKF and 4DVar modules for assimilation. 

 

run_obsproc.sh 
Top-level control script that runs all the observation pre-processing jobs. 

 
module_enkf.sh 

Runs the EnKF module. 
Prior ensemble members are linked as fort.$((80010+mid)), where mid is the member id 
from 1, 2, …, to nens. The prior ensemble mean will be output as 
fort.$((80010+nens+1)). Similarly, the posterior ensemble members will be output as 
fort.$((90010+mid)), and the posterior ensemble mean (the analysis) will be output as 
fort.$((90010+nens+1)). 
GTS observations prepared by obsproc.exe will be linked as obs_3dvar_<time string>. 
The format for time string is “ccyymmddHHMMSS”. Radar and radiance observation files 
are linked separately, see Appendix B and Section 4 for more details. 
Runtime diagnostic output is written to enkf.log. Information of assimilated and rejected 
observations are written to fort.10000 and fort.10001, respectively. 

 

namelist_*.sh 
Scripts that generate namelist files for a certain module. The variables are defined using 
bash export command before call these scripts, and the output is write to a namelist file 
that reflect the variables defined. 

 
module_wrf_ens.sh 

Runs ensemble WRF forecast across the cycle period (from $DATE to $NEXTDATE). 
Before running the ensemble forecasts, the lateral boundary conditions (LBC) are updated 
and/or perturbed, because after data assimilation the values along the boundary may have 
changed and thus become inconsistent with the current boundary tendencies. For ensemble 
forecasts, the LBC for each ensemble member needs to be perturbed to allow uncertainties to 
enter the domain from boundaries, which will help prevent the LBC to over-constrain the 
solution and maintain ensemble spread. 
There are two approaches to update a BC file: 
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1). Using da_update_bc.exe from the WRFDA package. This requires LBC files wrfbdy 
to be prepared separately for each cycle, since da_update_bc.exe only udpates the first time 
step in wrfbdy files.  
2). Using update_wrf_bc.exe from the WRFBC_v2.1_alltime package. This is the default 
option. LBC files can be created at DATE_START, and each member maintain a copy of LBC 
file as fc/wrfbdy_$dm_$mid, which contains all the necessary time steps for this experiment. 
A param.in configuration file will be generated automatically when running 
update_wrf_bc.exe with the following contents. 

&control_param 
 wrf_3dvar_output_file = 'wrfinput_d01_update' 
 wrf_bdy_file          = 'wrfbdy_d01_update' 
 wrf_bdy_file_real     = 'wrfbdy_d01_real' 
 wrf_input_from_si     = 'wrfinput_d01_real' 
 wrf_input_from_si_randmean = 'random_mean' 
 wrf_3dvar_random_draw = 'random_draw' 
 cycling = .true. 
 low_bdy_only = .false.  
 perturb_bdy = .true. 
 n_1 = 1 
/  

wrfinput_d01_real and wrfbdy_d01_real are the original output from real.exe at the 
current cycle, which serve as baseline unperturbed values. wrfinput_d01_update and 
wrfbdy_d01_update are the perturbed/updated files. wrfinput_d01_update is typically 
linked from the analysis at this cycle from data assimilation. random_mean and random_draw 
defines the perturbation, which is drawn from the pool of 100 perturbed ICs generated at 
DATE_START. n_1 is the number of time step in wrfbdy that the program will update/perturb, 
which is calculated automatically by the script. 

 

module_wrf.sh 
Runs deterministic forecast from analysis. This module can either be called during cycling 
data assimilation (in run_cycle.sh), or after all cycling is complete (call 
run_forecast.sh after run_cycle.sh finishes). 

 
run_forecast.sh 

Top-level control script that runs all the deterministic forecasts. 

 
util.sh 

A collection of utility functions used by all control scripts. 
advance_time $DATE $inc  

Handles time calculation. It advances a time string $DATE forward $inc minutes. Time 
string is formatted as “ccyymmddHHMM”. 

wrf_time_string $DATE  
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Converts $DATE time string into format used in WRF input/output file names, “ccyy-
mm-dd_HH:MM:SS”. 

wait_for_module $rundir  
Scans the stat files in the runtime directory of a module, and sleep until it’s content 
becomes “complete”.  

watch_log $logfile $keyword $timeout $rundir  
Scans the runtime $logfile of a module, and sleep until the log file contains a 
$keyword indicating success in completion (e.g. “SUCCESS” for WRF runs). If the 
function has slept for longer than $timeout minutes, the function will return an error 
message and exit. 

watch_file $filename $timeout $rundir  
Sleeps until the $filename output file exists. If the function has slept for longer than 
$timeout minutes, the function will return an error message and exit. 

 
job_submit.sh 

Script that handles job submission and monitoring for a certain module. This script is where 
specific parameters and commands should be defined according to the batch scheduler system 
being used. Currently, we provide examples for the NOAA Jet, TACC Stampede2, and NCAR 
Cheyenne HPC systems.  
There are two job submit modes. For $JOB_SUBMIT_MODE==1, the top-level run_cycle.sh 
itself is submitted to the batch queue with allocation of a relatively large amount of resources, 
and each module is executed using mpiexec (or something similar) directly. This mode is 
suitable for HPC systems that are crowded and have long queuing time. Submitting the whole 
experiment as one batch job will reduce the amount of waiting in the queue, but the allocated 
resources should accommodate the most demanding module (usually EnKF and 4DVar). 
For $JOB_SUBMIT_MODE==2, the top-level run_cycle.sh is executed directly in the 
command line. A separate run script is created by job_submit.sh for each individual module 
and submitted separately to the queue. The control script sleeps while the job is still 
waiting/running in the queue. This mode will have better cost efficiency since the resources 
are spent in an on-demand fashion, but this is not suitable for a slow queue. 

 

jstat 
Running “$SCRIPT_DIR/jstat $WORK_DIR” in the command line will provide a formatted 
view of the current job status. 

 

multi_physics*.sh 
Scripts that generates WRF model physics options that are randomly specified for each 
member. This is useful in creating a mulit-physics ensemble. 
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run_gen_be.sh and gen_be/*ksh 
Prepares background error covariance file be.dat using gen_be from the package. An 
ensemble that samples the background error, either from 12- and 24-h forecast differences 
(NMC method) or from an ensemble with different model configuration. 

 

calc_domain_moves.sh and calc_ij_parent_start.sh 
Defines preset moves for storm-following nested domains. The storm motion is given by best 
track observations, such as the TC Vitals data from NHC. 

 

3.3 Hybrid data assimilation components 
module_4dvar.sh 

Runs the 4DVar module. The WRFDA code da_wrfvar.exe will be called. Observations 
from DATE+OBS_WIN_MIN to DATE+OBS_WIN_MAX will be included as several time slots 
ob1.ascii, ob2,ascii, etc. Note that when preparing for these observations, the 
obsproc.exe should be running in 4DVar mode and generate the corresponding time slots. 

 
module_*window.sh  and module_*window1.sh 

4DVar cycling (Fig. 3.1b) differs from EnKF in that the analysis time is valid at the beginning 
of the observation window instead of at the center of this window. The 
module_wrf_window.sh script handles the WRF forecast step that runs from 
DATE+OBS_WIN_MIN to NEXTDATE+OBS_WIN_MIN. 
When running WRF in storm following mode, an extra run with domains fixed in space is 
necessary so that observation locations will be correctly calculated relative to the domains. 
This extra run will be handled by module_wrf_window1.sh, which runs the WRF model 
across the observation window to prepare a background trajectory with fixed domain.  
The workflows for E4DVar and 4DEnVar are compared in Fig. 3.1c and 3.1d. When coupling 
4DVar to EnKF in E4DVar, the analysis from 4DVar at DATE+OBS_WIN_MIN is run forward 
to DATE using module_wrf_window.sh, so that the EnKF analysis ensemble can be 
recentered about this new analysis. For 4DEnVar, since the ensemble perturbations (ep) across 
the whole observation window are required to replace the functionality of tangent-linear and 
adjoint model, an ensemble forecast across the observation window is performed by 
module_wrf_ens_window1.sh with fixed domain. Note that module_wrf_ens.sh 
ensemble forecasts are run with storm-following domains. 
For more details of the formulation of hybrid methods, please refer to Poterjoy and Zhang 
(2014a,b). 
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3.4 EnKF code components 
 
Makefile 

Configuration file for compiling the code using make. 

 
main.f  

Top-level source code for the EnKF parallel program enkf.mpi. It contains the following 
steps. 

1. Initialize MPI environment: parallel_start. 
2. Load configuration: get_wrf_info and read_namelist. 

3. Read observation file: get_all_obs. 
4. Figure out parallel strategy: calculate nmcpu, nicpu, njcpu, and related ids (sid, gid) and 
indices (iid, jid). 
5. Allocate data structure x and xm, and read in the prior ensemble: read_ensemble. 

6. Calculate and output prior ensemble mean using MPI_Allreduce and output. 
7. Figure out observation assimilation sequence ind(obs%num). 

8. Run EnKF algorithm: enkf. 
9. Output posterior ensemble and mean. 
10. Finish and clean up. 

 
obs_io.f 

Subroutines for processing observations. 
get_all_obs 

Top-level observation processing subroutine, read in all observation files and calls sorting 
algorithms. 

get_gtsobs_3dvar  
Reads the obs_3dvar file output from obsproc.exe, and store data in raw%gts. 

get_wsr88d_radar 
Reads radar data files, and store data in raw%radar.  

get_airborne 

Reads airborne radar data files, and store data in raw%airborne.  
get_radiance 

Reads satellite radiance data file, and store date in raw%radiance. 
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sort_{sounding,upperair,surface,radarRV}_data 
Scans raw%gts, and sort each observation type according to their platform number (FM). 
Observation quality control and thinning are performed. Final observations are stored in 
obs data structure.  
Note that obs%type(iob) is a 10-character string, which begins with ‘S’, ‘P’, or ‘H’ 
(surface, pressure level, or height level); followed by an instrument string that is one 
of the obstype listed in Table B1, and end with a character indicating the variable type 
(‘U’, ‘V’, ‘T’, ‘Q’, etc.). For special observation types, the string only contains its 
description, such as ‘Radiance  ’. 
obs%position(iob,1:4) stores the observation location in x, y, and z direction (model 
grid points), and on pressure level. 
obs%roi(iob,1:2) stores the horizontal and vertical localization cutoff distances. 

obs%dat(iob) stores the observation value. 
 

xb.f 
Subroutines xb_to_* that calculate corresponding observations values from the model state. 

 
enkf.f 

The main EnKF algorithm. Contains the following steps. See Table 3.4 for a list of variable 
names in actual code and in pseudo code. 

1. Calculate domain slab start and end indices: istart, iend, jstart, jend. 
2. Calculate observation priors (Hx).  
First, loop over all observations and figure out their location in the vertical, run xb_to_* 
subroutines in finding-k-location mode (kkflag==0), and store the location (in terms of 
model vertical level) in obs%position(iob,3).  
Then, loop over the observations again and calculate the corresponding prior values as 
converted from model prior ensemble states. For horizontal and vertical interpolation, gather 
a 3×3×nk chunck of the prior state centered at the observation, xob, and convert to 
observation value yasend. Note that each processor in s_comm only compute part of the ya 
values in yasend, and at the end the ya values are gathered together. 

3. A copy of ya is saved as yf (observation priors). A copy of x is saved as xf (prior ensemble). 
4. Ensemble perturbations are calculated and multiplicative inflation is applied. 

5. Start assimilation loop 
5.1. Kick off the observation if innovation y_hxm is 5 times larger than observation error. 

5.2. Calculate innovation variances: d, and the square root modification term: alpha. 
5.3. Update zone (also the Kalman gain km) of the observation is ist:ied, jst:jed, 
and kst:ked, defined by localization distance ngx and ngz. 
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5.4. Gather slabs in x to form the update zone slab via choreographed MPI_Send and 
MPI_Recv. The indices of the km slabs are uist:uied,ujst:ujed, and the indices of x 
slabs gathered to sid are calculated (sistart, siend, sjstart, and sjend). 
5.5. Calculate Kalman gain km. 

5.6. Scatter km slabs back to sid. 
5.7. Update x and xm. 

5.8. Loop over all ya and update those within the localization distance. 
6. Run diagnostics for filter performance. Calculate consistency ratio. 

7. Apply covariance relaxation. 
8. Add the ensemble mean xm back to perturbations x to form the final analysis ensemble. 

 
sub_enkf_util.f 

A collection of utility functions shared by other EnKF code modules. 
read_namelist 

Reads namelist.enkf and initialize default values. 
read_ensemble 

Reads the prior ensemble files fort.800?? and store then in local data structure 
x(ni,nj,nk,nv,nm), each processor stores part of the ni, nj, and nm dimensions. 

output 

Output the posterior ensemble and write to fort.900?? files. 
wrf_var_dimension 

Handles staggered WRF grid for different variables. 
gaussdev 

Generate random draw from Guassian distribution.  
quicksort 

Sorts an array using Quick Sort algorithm. 

 
cal_roi.f 

Calculates localization factor comp_cov_factor using the Gaspari and Cohn (1999) 
polynomial. ngx and ngz are the cutoff distances (ROI) as number of grid points in horizontal 
and vertical directions, respectively. Subroutine cal_hroi specifies different ROIs to 
batches of observations as in SCL method (Weng and Zhang 2012). 

  
module_structure.f 

Defines data structure, constants, and namelist entries. 
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module_wrf_tools.f and module_map_utils.f 

A collection of utility functions from the WRF package. 

 
module_netcdf.f 

Subroutines that handle the I/O of NETCDF formatted files. 
 

mpi_module.f 
Provides interface with MPI subroutines for parallelization. The initialized MPI environment 
provides each processor an id proc_id, and a communicator comm that coordinates inter-
processor communication. 

  
module_radar.f 

Subroutines that processes radar observations. 
 

hurricane_center.f 
Subroutines that handles hurricane position and intensity (HPI) observations. 

 
ensemble_mean.f 

Source code for ensemble_mean.exe that calculates ensemble mean. 
 

replace_mean*.f 
Source code for replace_mean.exe that recenters the ensemble at a given mean file 
fort.70010. 

 
 

Table 3.4. A list of variable names in pseudo code (Table 2.2) and in the actual Fortran 
code along with their descriptions. 

Pseudo code Actual code Description 

𝑁  nens Ensemble size 

𝑘  ie Index for ensemble members 

𝑝  obs%num Number of observations 

𝑗  iob Index for observations 

𝑛  (ix+1)*(jx+1)* 
(kx+1)*nv 

Number of state variables 
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𝑥*
4(F)  x Prior ensemble perturbations 

𝑥(F)  xm Prior ensemble mean 

𝑦*&  yf Observation prior ensemble. 

𝑦*
(F) = 𝑦F

(F) + 𝑦F,*
4(F)  ya Observation posterior ensemble. 

𝑦"  y Observation value 

𝑦F" − 𝑦F
(F)  y_hxm Innovation  

𝑦F,*
4(F)  hxa Observation prior ensemble perturbations 

var(𝑦")  error**2 Error variance of observation 

var G𝑦F
(F)H  fac*var Background error variance of observation 

priors 
var$𝑦F") + var G𝑦F

(F)H  d Innovation variance 

𝐾F  km*fac/d Kalman gain 

𝜙  alpha Square root modification term 

cov G𝑦m
(F), 𝑦F

(F)H  fac*cov Covariance between observation l and j. 

𝜌F  corr_coef Localization function 

HROI ngx Horizontal localization cutoff distance (grid 
points) 

VROI ngz Vertical localization cutoff distance (levels) 
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4 Observation data file formats 

4.1 Conventional observations 
GTS data prepared routinely by NCAR can be found recorded in LITTLE_R text data format. 
The following is a typical sounding record: 
            13.48000             2.1600061052                                   NIAMEY-
AERO / NIGER                     FM-35 TEMP                              GTS (ROHK) 
USNR20 DRRN 302300                      227.00000         1   -888888   -888888       374   
-888888         T         F         F   -888888   -888888      20110930230000-888888.00000      
0-888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0 

 

  98600.00000      0    227.00000      0    305.35001      0    291.35001      0      
2.05778      0    280.00000      0-888888.00000      0-888888.00000      0-888888.00000      
0-888888.00000      0 

 

  92500.00000      0    790.00000      0    303.14999      0    282.14999      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0 

... 

 

  10000.00000      0  16550.00000      0    192.44998      0-888888.00000      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0 

 

-888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0 

 

-777777.00000      0-777777.00000      0     13.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0-888888.00000      0-888888.00000      0-
888888.00000      0-888888.00000      0 
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LITTLE_R formatted data can be easily concatenated and processed with obsproc.exe to 
produce the final data input to EnKF and 4DVar. The obsproc.exe output data format, 
obs_3dvar file, contains a header that looks like the following. 
 
TOTAL =   1153, MISS. =-888888., 
SYNOP =     24, METAR =      4, SHIP  =      9, BUOY  =      0, BOGUS =      0, 
TEMP  =      8, 
AMDAR =      4, AIREP =      0, TAMDAR=      0, PILOT =      0, SATEM =      0, 
SATOB =   1104, 
GPSPW =      0, GPSZD =      0, GPSRF =      0, GPSEP =      0, SSMT1 =      0, 
SSMT2 =      0, 
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TOVS  =      0, QSCAT =      0, PROFL =      0, AIRSR =      0, OTHER =      0, 
PHIC  =   0.00, XLONC =  75.00, TRUE1 =   0.00, TRUE2 = -30.00, XIM11 =   1.00, 
XJM11 =   1.00, 
base_temp= 290.00, base_lapse=  50.00, PTOP  =   100., base_pres=100000., 
base_tropo_pres= 20000., base_strat_temp=   215., 
IXC   =    223, JXC   =    334, IPROJ =      3, IDD   =      1, MAXNES=      1, 
NESTIX=    223, 
NESTJX=    334, 
NUMC  =      1, 
DIS   =   9.00, 
NESTI =      1, 
NESTJ =      1, 
INFO  = PLATFORM, DATE, NAME, LEVELS, LATITUDE, LONGITUDE, ELEVATION, ID. 
SRFC  = SLP, PW (DATA,QC,ERROR). 
EACH  = PRES, SPEED, DIR, HEIGHT, TEMP, DEW PT, HUMID (DATA,QC,ERROR)*LEVELS. 
INFO_FMT = (A12,1X,A19,1X,A40,1X,I6,3(F12.3,11X),6X,A40) 
SRFC_FMT = (F12.3,I4,F7.2,F12.3,I4,F7.3) 
EACH_FMT = (3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2),11X,3(F12.3,I4,F7.2)) 

 
Followed by the actual records of observations. Each record contains three parts whose format are 
described by INFO_FMT, SRFC_FMT, and EACH_FMT in the header. A typical record looks like the 
following. 
FM-35 TEMP   2011-10-19_00:00:00 UpperAir OBS from MADIS                     126      
-7.300                 72.400                  0.000                 61967                                   

 -888888.000 -88 200.00 -888888.000 -88  0.200 

  100900.000   0 100.00       2.600   0   1.10     100.000   0   1.10                  
1.000   0   7.00     300.750   0   1.00     295.950   0   1.00                 
74.663   0  15.00 

  100000.000   0 100.00       5.100   0   1.10     130.000   0   1.10                 
79.000   0   7.00     300.550   0   1.00     296.150   0   1.00                 
76.503   0  15.00 

   99000.000   0 100.00      10.800   0   1.10     125.000   0   1.10                
168.000   0   7.06     299.750   0   1.00     295.850   0   1.00                 
78.798   0  14.69 

... 

 
The INFO part contains, from left to right, the platform number, observation type, a time string, a 
description, number of vertical levels, latitude, longitude, elevation, station id. 
Each observation contains three numbers (observed value “%12.3f”, quality control flag “%4i”, 
and observation error “%7.2f”). The SRFC part contains the surface observations: sea level 
pressure (slp) and precipitable water (pw). The EACH part contains the upper-air observations: 
pressure, wind speed, wind direction, height, temperature, dewpoint temperature, and relative 
humidity. 

 

4.2 Radar observations 
Land-based WSR-88D radar 
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Content of the radar_data.info file is: 
station idn="000386" id="SPOL" name="Gan/SPOLS-bandradar" st="  " co="  
" lat="-0.63" lon="73.10" elev="10" 

observation attribute hgt="0" scan="8" elevation="0.5 1.5 2.5 3.5 5.0 
7.0 9.0 11.0" mindis="4.0" maxdis="150." ddis="4.0" dazm="5.0" 
rf_err="5.0" rv_err="3.0" 

 
station: 

idn: the radar station id number. 
id: the 4-character station name. 

name: a description of the station. 
lat: the latitude of the station. 

lon: the longitude of the station. 
elev: the terrain elevation of the station. 

 
observation attribute: 

hgt: the height of the station. 
scan: the number of scans. 

elevation: a list of elevation angles for different scans. 
mindis: the minimum range distance. 

maxdis: the maximum range distance. 
ddis: the increment of distance. 

dazm: the increment of azimuthal angles. 
rf_err: observation error for reflectivity. 

rv_err: observation error for radial velocity. 
 

The radar superob data file contains records with the following format: 
     350.000       1.500      87.700      -1.795      12.110 

From left to right, azimuthal angle, elevation angle, radial distance, radial velocity (rv), and 
reflectivity (rf) are recorded as “%12.3f”.  
 

Airborne Doppler radar 
The airborne Doppler radar data file contains records with the following format: 

201110010000    10.000   -80.000     12000   350.000     1.500    87.700    
-1.795    12.110 
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From left to right: 
the time of observation point is a 12-character string 

latitude, longitude, and height of the basepoint (radar location), 
azimuthal angle, elevation angle, radial distance, radial velocity (rv), and reflectivity (rf) 
of the data point are recorded as “%10.3f”. 

 

4.3 Satellite observations 
The satellite brightness temperature data file contains records with the following format: 

201110080100   mviriNOM_m07           3     -10.273      59.483     250.534 

 
From left to right: 

the time of observation point is a 12-character string,  
the satellite instrument id is a 15-character string,  

the channel number is recorded as a “%12i”,  
the latitude, longitude, and brightness temperature are recorded as “%12.3f”. 
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5 Tunable parameters 
To achieve the best performance of a data assimilation system, a tuning process is usually required. 
For EnKF, some ad hoc modification of the filter, such as localization and inflation, need to be 
tuned for a particular application scenario, considering the observation type, network density, and 
accuracy, and the particular spatial and temporal scales of the system of interest. Houtekamer and 
Zhang (2015) provide a comprehensive review of such consideration when applying an EnKF to 
study a variety of systems. 

5.1 Covariance Inflation 
The PSU system uses covariance relaxation, also known as the relax-to-prior-perturbation (RTPP) 
method proposed by Zhang et al. (2004), to inflate the background error covariance after each 
assimilation cycle. Unlike the standard inflation method (Anderson 2001), in which all points in 
the prior field are inflated, this relaxation method only inflates the covariance at grid points 
affected by the data assimilation via a weighted average between the prior perturbations and the 
posterior perturbations. The mixing coefficient 𝛼  is set from 0.7 to 0.8 for imperfect-model 
experiments (Meng and Zhang 2007) or real-data applications (Whitaker et al. 2008; Meng and 
Zhang 2008a,b; Torn and Hakim 2008) due to un-avoidable imperfections in the forecast model 
and nonlinear error growth between assimilation cycles. For perfect-model application, the mixing 
coefficient 𝛼 is typically tuned around 0.5. Adaptive methods that estimate this 𝛼 parameter online 
with innovation statistics are also available (e.g. Ying and Zhang 2015; Kotsuki et al. 2016).  

5.2 Localization 
The localization cutoff distance, also known as the radius of influence (ROI), is another important 
tuning parameter. For a given observation network, studies showed that the optimal localization 
distance is dependent on the underlying dynamical correlation length scale, the observation density, 
as well as the ensemble size (e.g. Kirchgessner et al. 2014; Perianez et al. 2014; Ying et al. 2018). 
Typically, the ROI is set to ~5 times the observation intervals. As ensemble size decreases, the ROI 
needs to decrease as well. The smaller scale a system is, the smaller ROI needs to be as well. If the 
ROI is too large, too much sampling error will contaminate the analysis increments. If the ROI is 
too small, the available information from observations are not fully utilized and the solution can 
suffer from imbalances induced by the imposed length scale (Greybush et al. 2011). 
For dense observing network, the PSU system has an additional option to utilize a successive 
covariance localization (SCL) technique (Zhang et al. 2009), which assimilates observations that 
contain information about the state of the atmosphere at a wide range of scales and is designed to 
reduce computational costs and sampling errors. This technique uses the Gaspari and Cohn (1999) 
fifth-order correlation function for covariance localization, but a different localization radius of 
influence (ROI) is used for different groups of observations by random sampling. SCL assumes 
that both large- and small-scale errors are simultaneously present. First, one tries to remove 
dynamically important aspects of the large-scale error by assimilating a relatively small subset of 
observations with a large ROI. Next, the ROI is made smaller, and higher-density observations are 
used to constrain both smaller-scale errors and what remains of the large-scale error. The process 
is repeated until all scales resolved by the observational network have been adequately dealt with. 
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5.3 Hybrid-related parameters 
In hybrid data assimilation method (E4DVar and 4DEnVar), the mixing coefficient 𝛽 control the 
relative contribution of climatological (static) and ensemble-estimated background error 
covariance.  

  𝑃��� = (1 − 𝛽)𝐵 + 𝛽	𝜌� ∘ 𝑃&     (5.1) 
The ensemble-estimated covariance has better flow dependency but is subject to sampling noises, 
while the climatological covariance is full-rank and therefore allows new directions to occur in the 
analysis increment, which effectively serves as an additive inflation that maintains the filter 
stability.  
Typically, the mixing coefficient is set to 0.8. See Poterjoy and Zhang (2014a, b; 2015) for more 
analysis of how this parameter influence the performance of a hybrid method. 
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Appendix A: Proof of equivalence between simultaneous and 
serial algorithms 

The simultaneous assimilation algorithm (2.3) – (2.6) can be written as 

  𝑥= = 𝑥& + 𝑃&𝐻1(𝐻𝑃&𝐻1 + 𝑅)3,[𝑦" − ℎ(𝑥&)],     (A1) 

and  

  𝑃= = 𝑃& − 𝑃&𝐻1(𝐻𝑃&𝐻1 + 𝑅)3,𝐻𝑃&.     (A2) 

We can simplify (A1) using the following assumption, 

  𝑦" − ℎ(𝑥&) ≈ ℎ(𝑥�) + 𝐻(𝑥" − 𝑥�) − ℎ(𝑥�) − 𝐻(𝑥& − 𝑥�) 

           = 𝐻(𝑥" − 𝑥&).       (A3) 

And (A1) becomes  

  𝑥= = 𝑥& + 𝑃&𝐻1(𝐻𝑃&𝐻1 + 𝑅)3,𝐻(𝑥" − 𝑥&).    (A4) 

Since R is diagonal, there exists 𝑆 = diag$�𝑅,,,�𝑅55, . . . , �𝑅YY), so that 𝑅 = 𝑆1𝑆. Let  𝐻� =
𝑆31𝐻, we have  

           𝑃&𝐻1(𝐻𝑃&𝐻1 + 𝑅)3,𝐻      (A5) 

       = 𝑃&𝐻1[𝑆1(𝑆31𝐻𝑃&𝐻1𝑆3, + 𝐼)𝑆]3,𝐻     (A6) 

       =	𝑃&𝐻1𝑆3,(𝑆31𝐻𝑃&𝐻1𝑆3, + 𝐼)3,𝑆31𝐻    (A7) 

       = 𝑃&𝐻�1$𝐻�𝑃&𝐻�1 + 𝐼)3,𝐻�      (A8) 

Using matrix identity 𝐴(𝐼 + 𝐵𝐴)3, = (𝐼 + 𝐴𝐵)3,𝐴, and let 𝑄 = 𝑃&𝐻�1𝐻�, we can further simplify 
(A8) as  

       =	𝑃&𝐻�1𝐻�$𝑃&𝐻�1𝐻� + 𝐼)3,      (A9) 

       =	𝑄(𝑄 + 𝐼)3,        (A10) 

Finally, (A1) and (A2) can be rewritten as 

  𝑥= = 𝑥& + 𝑄(𝑄 + 𝐼)3,(𝑥" − 𝑥&) 

       = 𝑄(𝑄 + 𝐼)3,𝑥" + (𝑄 + 𝐼)3,𝑥&,      (A11) 

and 

  𝑃= = 𝑃& − 𝑄(𝑄 + 𝐼)3,𝑃& 

       =	(𝑄 + 𝐼)3,𝑃&.        (A12) 

Similarly, the update equations in the serial algorithm (2.7) – (2.17) can be written as 

  𝑥(FW,) = 𝑥(F) + 𝑃(F)𝐻F1$𝐻F𝑃(F)𝐻F1 + 𝑅FF)
3,
𝐻F$𝑥" − 𝑥(F))  

   = 𝑃(F)𝐻�F1𝐻�F$𝑃(F)𝐻�F1𝐻�F + 𝐼)
3,
𝑥" + $𝑃(F)𝐻�F1𝐻�F + 𝐼)

3,
𝑥(F),  (A13) 
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and 

  𝑃(FW,) = 𝑃(F) + 𝑃(F)𝐻F1$𝐻F𝑃(F)𝐻F1 + 𝑅FF)
3,
𝐻F𝑃(F) 

   = $𝑃(F)𝐻�F1𝐻�F + 𝐼)
3,
𝑃(F).      (A14) 

Here 𝐻�F is the j-th row of 𝐻�, so that 𝑄 = 𝑃&𝐻�1𝐻� = ∑ 𝑃&𝐻�F1𝐻�F
Y
F/, . 

 
Now, we prove the equivalence between serial and simultaneous assimilation algorithms by 
performing a mathematical induction on the number of observations p. 
If p = 1, the equivalence apparently holds. 

Assume that the equivalence is true for the first p-1 observation. Namely, 𝑥(Y) from the serial 
algorithm is the same as the analysis from the simultaneous algorithm assimilating the first p-1 
observations. We will show that the assimilation of the final p-th observation that updates 𝑥(Y) to 
𝑥(YW,) will yield the same result as the analysis from the simultaneous algorithm 𝑥=. 

First, we rewrite 𝐻� = �
𝐻�,→Y3,
𝐻�Y

�, where 𝐻�,→Y3, contains the first p-1 rows of 𝐻� and 𝐻�Y is the p-

th row. According to (A11) and (A12), we can write the analysis from simultaneous algorithm 
assimilating the first p-1 observation as 

  𝑄,→Y3,$𝑄,→Y3, + 𝐼)
3,𝑥" + $𝑄,→Y3, + 𝐼)

3,𝑥&,     (A15) 

where 𝑄,→Y3, = 𝑃&𝐻�,→Y3,1 𝐻�,→Y3,. 

Since 𝑥& = 𝑥(,), 𝑃& = 𝑃(,), and we assumed that this analysis is equivalent to 𝑥(Y) from the serial 
algorithm, we have 

  𝑥(Y) = 𝑄,→Y3,$𝑄,→Y3, + 𝐼)
3,𝑥" + $𝑄,→Y3, + 𝐼)

3,𝑥(,),   (A16) 

  𝑃(Y) = $𝑄,→Y3, + 𝐼)
3,𝑃(,),       (A17) 

and 

  𝑄,→Y3, = 𝑃(,)𝐻�,→Y3,1 𝐻�,→Y3,.      (A18) 

According to (A13), the assimilation of the p-th observation yields 

  𝑥(YW,) = 𝑃(Y)𝐻�Y1𝐻�Y$𝑃(Y)𝐻�Y1𝐻�Y + 𝐼)
3,
𝑥" + $𝑃(Y)𝐻�Y1𝐻�Y + 𝐼)

3,
𝑥(Y). (A19) 

Using (A16) and (A17), 

  𝑥(YW,) = $𝑄,→Y3, + 𝐼)
3,𝑃(,)𝐻�Y1𝐻�Y g$𝑄,→Y3, + 𝐼)

3,𝑃(,)𝐻�Y1𝐻�Y + 𝐼k
3,
𝑥" +  

       g$𝑄,→Y3, + 𝐼)
3,𝑃(,)𝐻�Y1𝐻�Y + 𝐼k

3,
× 

       g𝑄,→Y3,$𝑄,→Y3, + 𝐼)
3,𝑥" + $𝑄,→Y3, + 𝐼)

3,𝑥(,)k.  (A20) 
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Let 𝑄Y = 𝑃(,)𝐻�Y1𝐻�Y. We can show that 

  𝑄 = 𝑃(,)𝐻�1𝐻� = 𝑃(,)𝐻�,→Y3,1 𝐻�,→Y3, + 𝑃(,)𝐻�Y1𝐻�Y = 𝑄,→Y3, + 𝑄Y, (A21) 

and 

      $𝑄,→Y3, + 𝐼)
3,𝑄Y + 𝐼  

  = $𝑄,→Y3, + 𝐼)
3,$𝑄Y + 𝑄,→Y3, + 𝐼) 

  = $𝑄,→Y3, + 𝐼)
3,(𝑄 + 𝐼).       (A22) 

Using (A21) and (A22), (A20) becomes 

  𝑥(YW,) = $𝑄,→Y3, + 𝐼)
3,𝑄Y g$𝑄,→Y3, + 𝐼)

3,(𝑄 + 𝐼)k
3,
𝑥" +  

       g$𝑄,→Y3, + 𝐼)
3,(𝑄 + 𝐼)k

3,
× 

       g𝑄,→Y3,$𝑄,→Y3, + 𝐼)
3,𝑥" + $𝑄,→Y3, + 𝐼)

3,𝑥(,)k.  

Note that 𝑄 and 𝐼 are symmetric matrices,  

  𝑥(YW,) = g$𝑄,→Y3, + 𝐼)
3,(𝑄 + 𝐼)k

3,
$𝑄,→Y3, + 𝐼)

3,$𝑄Y + 𝑄,→Y3,)𝑥" + 

       g$𝑄,→Y3, + 𝐼)
3,(𝑄 + 𝐼)k

3,
$𝑄,→Y3, + 𝐼)

3,𝑥(,) 

   = 𝑄(𝑄 + 𝐼)3,𝑥" + (𝑄 + 𝐼)3,𝑥(,),     (A23) 

which is equivalent to 𝑥= as in (A11). 

 
Similarly, we can show for covariance 

 𝑃(YW,) = $𝑃(Y)𝐻�Y1𝐻�Y + 𝐼)
3,
𝑃(Y) 

  = g$𝑄,→Y3, + 𝐼)
3,𝑃(,)𝐻�Y1𝐻�Y + 𝐼k

3,
$𝑄,→Y3, + 𝐼)

3,𝑃(,) 

  = g$𝑄,→Y3, + 𝐼)
3,𝑄Y + 𝐼k

3,
$𝑄,→Y3, + 𝐼)

3,𝑃(,) 

  =	g$𝑄,→Y3, + 𝐼)
3,(𝑄 + 𝐼)k

3,
$𝑄,→Y3, + 𝐼)

3,𝑃(,) 

  =	(𝑄 + 𝐼)3,𝑃(,),        (A24) 

which is equivalent to 𝑃= as in (A12). 
Q.E.D. 
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Appendix B: EnKF namelist entries 
EnKF basic configuration, definition of update domain, and some tunable parameters (inflation, 
localization, etc.) 
&enkf_parameter 

nens = 10, Ensemble size. 
enkfvar     = 'T         ', 
'W         ', 'U         ', 
'V         ', 'QVAPOR    ', 
'QCLOUD    ', 'QRAIN     ', 
'PH        ', 'MU        ', 
'PSFC      ', 'P         ', 
'PHB       ', 'PB        ', 
'MUB       ', 'U10       ', 
'V10       ', 

State variables participating the calculation of Kalman 
gain. Variable names are 10-character strings. The 
number of variables is nv. 

updatevar    = 'T         ', 
'W         ', 'U         ', 
'V         ', 'QVAPOR    ', 
'QCLOUD    ', 'QRAIN     ', 
'PH        ', 'MU        ', 
'PSFC      ', 'P         ', 
'U10       ', 'V10       ', 

State variables actually being updated by the filter. 

update_is    = 2, 

update_ie    = 301, 

update_js    = 2, 

update_je    = 301, 

update_ks    = 1, 

update_ke    = 42, 

Start/end indices of region inside the model domain 
that will be updated by EnKF. 
s = start index, e = end index. 

i = zonal direction, 
j = meridional direction, 

k = vertical direction. 
Typically the whole domain is updated, the BC will be 
updated according to the updated values as well. If one 
does not want to change the BC (e.g. in a perfect-model 
experiment), then set this update region to skip the 
boundary buffer zone. 

 
inflate  = 1.0, Multiplicative inflation factor applied before 

assimilating observations,	𝜆 as in (2.20). 
relax_opt = 0, Covariance relaxation methods: 

0 = relax-to-prior-perturbation (Zhang et al. 2004) 

1 = relax-to-prior-spread (Whitaker and Hamill 2012) 
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relax_adaptive = .false., If true, turn on adaptive algorithm to estimate 
relaxation coefficient online using innovation statistics 
(Ying and Zhang 2015).  

mixing = 0.8, Relaxation coefficient, 𝛼 as in (2.21). 
random_order = .false., If true, assimilate observations in random sequence. 
print_detail = 1, Debug level. 
/ 

 
Parallel algorithm configuration. See section 2.5 for more details on the parallelization strategy 
and a description of the algorithm.  
&parallel 

manual_parallel = .true., If true, manually specify the decomposition of work 
load using nicpu, njcpu, and nmcpu. 
If false, the algorithm will try to figure out a parallel 
scheme automatically. 

nmcpu = 16, Number of processors used in nens+1 dimension 
(how many groups of members are there). 

nicpu = 2, Number of processors used in zonal direction when 
decomposing the domain. 

njcpu = 2, Number of processors used in meridional direction 
when decomposing the domain. 

/ 

 
Assimilation switches and configuration for each observation type <obstype> from the GTS data 
records. See Table B1 for a list of supported types. The data file that contains all routine 
observations is named obs_3dvar_”ccyymmddHHMMSS” (for more details, see Section 4.1). 
&<obstype>_obs 
use_<obstype> = .true., Whether to include this type of observation in EnKF 

assimilation. 
datathin_<obstype> = 0, Factor used to thin the observations, the larger the 

fewer observations are assimilated. 
hroi_<obstype> = 10, Localization radius of influence (ROI) in the horizontal 

direction, in units of number of model grid points. 
vroi_<obstype> = 5, Localization ROI in the vertical direction, in units of 

number of vertical levels. 
/ 
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Assimilation of hurricane position and intensity (HPI) observations from best-track data (e.g. from 
JTWC, or NHC TC Vitals). The best track data file is named hurricane_best_track. 
&hurricane_PI   
use_hurricane_PI = .false., Whether to include hurricane position and intensity 

(HPI) observations. 
hroi_<obstype> = 10, Localization radius of influence (ROI) in the horizontal 

direction, in units of number of model grid points. 
vroi_<obstype> = 5, Localization ROI in the vertical direction, in units of 

number of vertical levels. 
/ 

 

Assimilation of land-based WSR-88D radar data, which requires a radar_data.info file that 
describes the radar site and a text file “RadarID”_”ccyymmddHHMMSS”_so for each site that 
contains the superobs (see Section 4.2 for more details).  
&radar_obs 

use_radar_rf = .false., Whether to include radar reflectivity. 
use_radar_rv = .true., Whether to include radar radial velocity. 
datathin_radar = 0, Factor used to thin the observations, the larger the 

fewer observations are assimilated. 
hroi_radar = 10, Localization radius of influence (ROI) in the horizontal 

direction, in units of number of model grid points. 
vroi_radar = 5, Localization ROI in the vertical direction, in units of 

number of vertical levels. 
/ 

 
Assimilation of land-based radar data, which requires a airborne_”ccyymmddHHMM file that 
contains the superobs (see Section 4.2 for more details).  
&airborne_radar    

use_airborne_rf = .false., Whether to include radar reflectivity. 
use_airborne_rv = .true., Whether to include radar radial velocity. 
datathin_airborne = 0, Factor used to thin the observations, the larger the 

fewer observations are assimilated. 
hroi_airborne = 10, Localization radius of influence (ROI) in the horizontal 

direction, in units of number of model grid points. 
vroi_airborne = 5, Localization ROI in the vertical direction, in units of 

number of vertical levels. 
/ 
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Table B1. A list of supported GTS observation types. 
obstype WMO FM (platform) number  Description (BUFRLIB class) 

surface 12, 14 Land synoptic reports (SYNOPTIC) 

sounding 32, 33, 34, 35, 36, 37, 38 Upper air wind, temperature, and 
humidity profiles  
(RAOB, PIBAL, RECCO, DROPS) 

profiler 132 Wind profiler reports 

aircft 42, 96, 97 Aircraft reports 

(AIREP/PIREP, AMDAR, E-ADAS) 

metar 15, 16 Surface land reports (METAR) 

sfcshp 13, 18 Surface marine reports 

(SHIP, BUOY, C-MAN) 

spssmi 125, 126 DMSP SSM/I retrieval products, 
reprocessed wind speed, TPW 

atovs 131 TIROS operational vertical sounder 
retrieval products, temperature and 
humidity profiles. 

satwnd 88 Satellite-derived wind reports 
Atmospheric Motion Vectors 

seawind 281 Sea-surface wind speed retrievals from 
satellite scatterometer, such as ASCAT 

gpspw 111 GPS retrieval of Precipitable Water 
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Appendix C: Configuration file entries 

System workflow control parameters. 
RUN_ENKF=true If true, run EnKF component during cycling. 

RUN_4DVAR=false If true, run 4DVar component; 

If both RUN_ENKF and RUN_4DVAR are true, run hybrid 
data assimilation. 

RUN_ENVAR=false If true, run 4DEnVar instead of E4DVar. 

FORECAST_TO_END=false If true, run deterministic forecast (module_wrf.sh) 
from analysis at each data assimilation cycle towards 
DATE_END. 

MULTI_PHYS_ENS=false If true, use multi-physics ensemble.  

MULTI_INC=false If true, run incremental 4DVar.  

DECIMATION_FACTOR=3 Factor of decimation of high-resolution model grid to 
create lower-resolution model state for incremental 
4DVar. 

FOLLOW_STORM=false If true, use hurricane best track data (e.g. TC Vital) to 
define preset moves for nested domains so that inner 
domains follow the storm. 

STORM_ID=”al112017” Hurricane ID as defined in TC Vital data.  

CLEAN=false Whether to clean up runtime directory to save disk 
space. If true, this will purge the redundant wrfout files 
after the WRF forecasts are successfully complete and 
output are saved to fc/ and output/. 

 

Experiment time control. Time unit is in minutes. 

EXP_NAME=”IRMA_EnKF” Name of the cycling data assimilation experiment. 

DATE_START=201808300000 Start time of the experiment, the initial ensemble is 
generated at this time. 
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DATE_END  =201809130000 End time of the experiment. This is typically the end of 
simulation of the system of interest. 

DATE_CYCLE_START=201808310000 The first assimilation cycle starts at this time. The 
ensemble spin-up cycle period (form DATE_START to 
DATE_CYCLE_START) can be longer than assimilation 
cycles, controlled by this start time. 

DATE_CYCLE_END  =201809121800 The last assimilation step is at this time. 

CYCLE_PERIOD=180 Time period between assimilation cycles. 

WRFOUT_INTERVAL=(180 180 180) Output interval for WRF forecasts (MAX_DOM). 

LBC_INTERVAL=360 Time interval at which LBC tendencies are available in 
wrfbdy files. 

OBS_WIN_MIN=-90 Observation window left offset relative to DATE. 

OBS_WIN_MAX=90 Observation window right offset relative to DATE. 

MINUTES_PER_SLOT=30 Interval of each time slot in 4DVar, number of time 
slots is  

(OBS_WIN_MAX-OBS_WIN_MIN)/MINUTES_PER_SLOT 

FORECAST_MINUTES=360 Default WRF deterministic forecast run period. If 
FORECAST_TO_END=true, this will be overwritten to 
the actual forecast period that goes all the way to 
DATE_END. 

 

Define directories, where code and data are stored. 

WORK_DIR=$SCRATCH/$EXP_NAME Runtime directory for the experiment. 
Usually located on scratch system so 
that large amount of data can be output 
temporarily. 

SCRIPT_DIR=$WORK/PSU_WRF_EnKF Top-level PSU system code directory. 

CODE_DIR=$WORK/code Top-level code directory storing external 
packages. 

DATE_DIR=$WORK/data Top-level data directory. 
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WPS_DIR=$CODE_DIR/WPSV3 Location of WPS code. 

WRF_DIR=$CODE_DIR/WRFV3 Location of WRF model code. 

WRF_BC_DIR=$CODE_DIR/WRF_BC_v2.1_alltime Location of WRF_BC code. 

WRFDA_DIR=$CODE_DIR/WRFDAV3 Location of WRFDA code package. 

MULTI_INC_DIR=$CODE_DIR/MULTI_INC Location of Multi-incremental utility 
functions. 

ENKF_DIR=$CODE_DIR/EnKF/src Location of EnKF code. 

FG_DIR=$DATA_DIR/fnl First guess from global forecast or 
reanalysis that provides IC and BC for 
the experiment. 

GEOG_DIR=$WORK/data/geog Location of geog data for WPS 
geogrid.exe 

BE_DIR=$DATA_DIR Location of background error covariance 
file be.dat for 
module_perturb_ic.sh. 

TCVITALS_DIR=$WORK/data/nhc/tcvitals Location of TC Vitals best track data. 

 

Domain configuration for WRF. After the description, (MAX_DOM) indicates that entry is an array 
with one for each nested domain.  

TWO_WAY_NESTING=true If true, use two-way nesting (feedback=1) for WRF. 

MAX_DOM=3 Total number of nested domains. 

E_WE=(379 298 222) Number of grid points in west-east direction  (MAX_DOM). 

E_SN=(244 298 222) Number of grid points in south-north direction 
(MAX_DOM). 

E_VERT=(35 35 35) Number of vertical levels (MAX_DOM). 

DX=(27000 9000 3000) 

DY=(27000 9000 3000) 
Grid spacing in meters (MAX_DOM). 

TIME_STEP=(90 30 10) Model time step in seconds (MAX_DOM). 
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PARENT_ID=(0 1 2) Domain id (MAX_DOM). 

GRID_RATIO=(1 3 3) Ratio of grid spacing between parent and child domains 
(MAX_DOM). 

TIME_STEP_RATIO=(1 3 3) Ratio of time steps between parent and child domains 
(MAX_DOM). 

I_PARENT_START=(1 100 100) Start index in west-east direction in the parent domain for 
the lower left corner of the child domain (MAX_DOM). 

J_PARENT_START=(1 70 100) Start index in south-north direction in the parent domain 
for the lower left corner of the chile domain (MAX_DOM). 

MAP_PROJ=”mercator” Map projection method. 

REF_LAT=25.0 Reference latitude of the largest domain. 

REF_LON=-65.0 Reference longitude of the largest domain. 

STAND_LON=-65.0 Standard longitude of the largest domain. 

TRUELAT1=30.0 

TRUELAT2=60.0 
True latitude 1 and 2 (in lambert projection). 

P_TOP=1000 Model top level pressure. 

 

WRF physics parameterization configuration. Extra options can be added by modifying the 
namelist_wrf.sh file. For example, if you want to make sst_skin in namelist.input a 
configuration file entry, change the “sst_skin=1” line in namelist_enkf.sh to 
“sst_skin=${SST_SKIN:-1}”, where 1 is the default value if SST_SKIN is not set in 
configuration file. See WRF manual for more details of available options. 

MP_PHYSICS=(6 6 6) Microphysics parametrization option (MAX_DOM). 

RA_LW_PHYSICS=(1 1 1) Longwave radiation scheme (MAX_DOM). 

RA_SW_PHYSICS=(1 1 1) Shortwave radiation scheme (MAX_DOM). 

RADT=(27 9 3) Time interval of radiation scheme calculation 
(MAX_DOM). 

SF_SFCLAY_PHYSICS=(1 1 1) Surface layer scheme (MAX_DOM). 
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SF_SURFACE_PHYSICS=(1 1 1) Land surface model (MAX_DOM). 

BL_PBL_PHYSICS=(1 1 1) Boundary layer model (MAX_DOM). 

BLDT=(0 0 0) Time interval of boundary layer calculation 
(MAX_DOM). 

CU_PHYSICS=(0 0 0) Cumulus parameterization scheme (MAX_DOM). 

CUDT=(5 5 5) Time interval of cumulus scheme calculation 
(MAX_DOM). 

SST_UPDATE=0 0 = do not update SST 

1 = update SST, will require SST input from 
wrflowinp file. 

 

EnKF options. Those options are connected to those in namelist_enkf.sh. 

NUM_ENS=60 Ensemble size. 

NMCPU=16 Number of processors used in nens+1 dimension 
(how many groups of members are there). 

NICPU=4 Number of processors used in zonal direction when 
decomposing the domain. 

NJCPU=4 Number of processors used in meridional direction 
when decomposing the domain. 

INFLATION_COEF=1.0 Multiplicative inflation factor applied before 
assimilating observations, 𝜆 as in (2.20). 

RELAX_OPT=0 Covariance relaxation methods: 

0 = relax-to-prior-perturbation (Zhang et al. 2004) 
1 = relax-to-prior-spread (Whitaker and Hamill 2012) 

RELAX_ADAPTIVE=false If true, turn on adaptive algorithm to estimate 
relaxation coefficient online using innovation statistics 
(Ying and Zhang 2015).  

RELAXATION_COEF=0.8 Relaxation coefficient, 𝛼 as in (2.21). 



 47 

REPLACE_MEAN=false After EnKF analysis step, if true, replace ensemble 
mean with fields defined by REPLACE_MEAN_WITH. 

REPLACE_MEAN_WITH=”forecast” “forecast”: replace ensemble mean with a deterministic 
forecast from previous cycle. 

“gfs”: replace ensemble mean with GFS forecast from 
global model. 

INCLUDE_LITTLE_R=true Include LITTLE_R formatted data as input to 
obsproc.exe. 

INCLUDE_BUFR=false Include BUFR formatted data as input to 
obsproc.exe. This will require BUFR decoders. 

INCLUDE_MADIS=false Include MADIS formatted data as input to 
obsproc.exe. 

 

Switches of observation types that are shared in namelist_enkf.sh and namelist_wrfvar.sh 
to include/exclude certain observations. 

 namelist_enkf.sh namelist.wrfvar.sh 

USE_SYNOPOBS=true N/A use_synopobs 

USE_SURFOBS=true use_surface N/A 

USE_SOUNDOBS=true use_sounding use_soundobs 

USE_PILOTOBS=true N/A use_pilotobs 

USE_PROFILEROBS=true use_profiler use_profilerobs 

USE_AIREPOBS=true use_aircft use_airepobs 

USE_METAROBS=true use_metar use_metarobs 

USE_SHIPSOBS=true use_sfcshp use_shipsobs 

USE_SSMIOBS=true use_spssmi N/A 

USE_SATEMOBS=true N/A use_satemobs 

USE_GPSPWOBS=true use_gpspw use_gpspwobs 

USE_GPSREFOBS=true N/A use_gpsrefobs 

USE_ATOVS=true use_atovs N/A 

USE_GEOAMVOBS=true use_satwnd use_geoamvobs 

USE_POLARAMVOBS=true N/A use_polaramvobs 

USE_QSCATOBS=true N/A use_qscatobs 

USE_RADAROBS=true N/A use_radarobs 

USE_RADAR_RF=true use_radar_rf N/A 
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USE_RADAR_RV=true use_radar_rv N/A 

USE_AIRBORNE_RF=true use_airborne_rf N/A 

USE_AIRBORNE_RV=true use_airborne_rv N/A 

USE_BOGUSOBS=true N/A use_bogusobs 

USE_BUOYOBS=true N/A use_buoyobs 
 

Data thinning in EnKF namelist 

THIN_SURFACE=0 Data thinning parameter for surface observations. 

THIN_SOUNDING=0 Data thinning parameter for sounding observations. 

THIN_PROFILER=0 Data thinning parameter for profiler observations. 

THIN_AIRCFT=0 Data thinning parameter for aircft observations. 

THIN_METAR=0 Data thinning parameter for metar observations. 

THIN_SFCSHP=0 Data thinning parameter for sfcshp observations. 

THIN_SPSSMI=0 Data thinning parameter for spssmi observations. 

THIN_ATOVS=0 Data thinning parameter for atovs observations. 

THIN_SATWND=0 Data thinning parameter for satwnd observations. 

THIN_GPSPW=0 Data thinning parameter for gpspw observations. 

THIN_RADAR=0 Data thinning parameter for radar/airborne 
observations. 

THIN_RADIANCE=0 Data thinning parameter for radiance observations. 

 

Localization distance, which is the radius of influence ROI, also known as the cutoff distance 
(where the covariance is tapered to zero). 

HROI_SFC=900 Horizontal ROI for surface observations (in km). 

HROI_UPPER=2000 Horizontal ROI for upper-air observations (in km). 

HROI_RADAR=45 Horizontal ROI for radar observations (in km). 

HROI_RADIANCE=30 Horizontal ROI for satellite radiance (in km). 

VROI=5 Vertical ROI (number of vertical levels). 
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VROI_RADAR=15 Vertical ROI for radar observations (number of vertical 
levels). 

 

WRFDA options. 

CV_OPTIONS=3 3 = CV3 option, error covariance from global model 
climatology (uses be.dat.cv3 from the WRFDA 
package). 

5 = CV5 option, error covariance calculated from 
ensemble forecasts using the NMC method (generating 
customized be.dat file using gen_be from the 
WRFDA package). 

VAR_SCALING1=1.0 

VAR_SCALING2=1.0 

VAR_SCALING3=1.0 

VAR_SCALING4=1.0 

VAR_SCALING5=1.0 

Variance scaling factors for: 

1: streamfunction; 2: unbalanced velocity potential; 3 – 
unbalanced temperature; 4 – pseudo relative humidity; 
5 – unbalanced surface pressure.  

LEN_SCALING1=1.0 

LEN_SCALING2=1.0 

LEN_SCALING3=1.0 

LEN_SCALING4=1.0 

LEN_SCALING5=1.0 

Length scaling factor. 

MAX_EXT_ITS=3 Maximum number of outer loops (evaluating nonlinear 
trajectory and observation priors). 

NTMAX=80 Maximum number of inner loops (minimizing cost 
function). 

VAR4D_LBC=false If true, include boundary condition in the cost 
function. 

ALPHACV_METHOD=2 𝛼 control variable method for hybrid data assimilation: 

1 = ensemble perturbations in control variable space. 

2 = ensemble perturbations in model space. 

JE_FACTOR=1.25 Ensemble covariance weighting factor. This is 
equivalent to 1/𝛽, where 𝛽 is from (5.1). 
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Parallel algorithm configuration. 

HOSTPPN=12 Number of processors per node (for a particular HPC 
the experiment is running on). 

HOSTTYPE=”jet” Type of HPC. Used in job_submit.sh 

JOB_SUBMIT_MODE=2 Job submission mode 

1 = submit top-level run_cycle.sh to the queue as 
one batch job and components run by mpiexec calls. 

2 = execute run_cycle.sh in the command line, and 
submit each component as separate batch jobs to the 
queue. 

real_ntasks=16 Number of processors used for real.exe jobs. 

wrf_ntasks=64 Number of processors used for WRF deterministic 
forecast, or for each member of the WRF ensemble 
forecasts.  

var3d_ntasks=64 Number of processors used for 3DVar jobs using 
WRFDA. 

var4d_ntasks=256 Number of processors used for 4DVar jobs using 
WRFDA. 

var4d_ppn=16 Number of processors per node (ppn) used for 4DVar 
jobs. 

enkf_ntasks=256 Number of processors used for EnKF jobs. 

enkf_ppn=16 Number of processors per node (ppn) used for EnKF 
jobs. If the memory required by each processor is too 
large, one can reduce ppn so that each processor get 
allocated larger memory. 
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