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ABSTRACT: A multiscale alignment (MSA) ensemble filtering method was introduced by Ying to reduce nonlinear posi-
tion errors effectively during data assimilation. The MSA method extends the traditional ensemble Kalman filter (EnKF)
to update states from large to small scales sequentially, during which it leverages the displacement vectors derived from
the large-scale analysis increments to reduce position errors at smaller scales through warping of the model grid. This study
stress tests the MSA method in various scenarios using an idealized vortex model. We show that the MSA improves filter
performance as number of scales (Ns) increases in the presence of nonlinear position errors. We tuned localization parame-
ters for the cross-scale EnKF updates to find the best performance when assimilating an observation network. To further
reduce the scale mismatch between observations and states, a new option called MSA-O is introduced to decompose obser-
vations into scale components during assimilation. Cycling DA experiments show that the MSA-O consistently outper-
forms the traditional EnKF at equal computational cost. A more challenging scenario for the MSA is identified when the
large-scale background flow and the small-scale vortex are incoherent in terms of their errors, making the displacement
vectors not effective in reducing vortex position errors. Observation availability for the small scales also limits the use of
large Ns for the MSA. Potential remedies for these issues are discussed.
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1. Introduction

Geophysical models have increasing prediction skill over
the past decade thanks to improving model resolution, better
representation of physical processes, as well as the increasing
number and better use of observations that help better initial-
ize the models. Data assimilation (DA) is the process of com-
bining the model forecasts with observational information
and finding the best estimate of the model states. DA is an im-
portant component in a prediction system, an inferior method
can be the bottleneck in prediction skill even though better
models and observing networks are already available. The en-
semble Kalman filter (EnKF; Evensen 1994; Burgers et al.
1998) is the state-of-the-art DA method in many geophysical
prediction problems (Houtekamer and Zhang 2016; Carrassi
et al. 2018). However, the EnKF analysis becomes more sub-
optimal as nonlinearity increases in the system. Hoffman et al.
(1995) showed that forecast error can be decomposed into
three components: displacement, amplitude, and residual. A
common source of nonlinearity is from large position errors
(displacement) in geophysical features, such as atmospheric
fronts, ocean eddies, sea ice edge, sunspots, and so on. Chen
and Snyder (2007) showed in a simple two-dimensional vortex
example that a linear error in vortex position manifests as
nonlinear errors in the model states (winds), and they sug-
gested including features (position, intensity, and shape) as

observations in DA to correct model states. The feature-based
observations improve the analyses when position errors are
moderate. However, as position errors increase, more nonli-
nearity is introduced in the relation between observed features
and model states, making the EnKF updates suboptimal.

To address this issue, previous studies used two different
strategies to improve DA performance. The first strategy is to
use a nonlinear DA method, such as the particle filter (PF;
Doucet et al. 2001; van Leeuwen 2009; Poterjoy 2016) and
rank histogram filter (Anderson 2010, 2019), to obtain the best
analysis in the presence of high nonlinearity. Some methods
formulate the ensemble filter using non-Gaussian error distri-
butions (moderate position errors will cause a skewed error
distributions) (e.g., Bishop 2016; Hodyss et al. 2017; Poterjoy
2022), or transform the variables using Gaussian anamorphosis
(Simon and Bertino 2009; Amezcua and van Leeuwen 2014),
to address the consequences of nonlinearity. Iterative methods
are introduced to find a nonlinear solution with a sequence of
linear updates (Sakov et al. 2012; Bocquet and Sakov 2014).
These methods can handle nonlinearity in general, not only
for position errors but also for nonlinear model dynamics and
observation operators, but the drawback is the increased com-
plexity in implementation and additional computational cost
compared to the EnKF.

The second strategy for dealing with nonlinear position error
is to explicitly account for displacements in DA (Ravela et al.
2007; Beezley and Mandel 2008) or to use the feature alignment
technique (FAT; Nehrkorn et al. 2014, 2015; Stratman et al.
2018) prior to DA. For the particular case of hurricane DA,
some studies suggested using a storm-relative framework (Aksoy
2013; Navarro and Hakim 2014; Lin et al. 2018) or vortex reloca-
tion (Liu et al. 2020) to avoid the negative impact from large
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displacements. The FAT is a more general solution to the prob-
lem, which derives displacement vectors from observations to
warp the model grid and reduce the misalignment between the
observed and model simulated features, bringing the DA prob-
lem closer to a linear regime. Ying (2019) noticed that smoothing
a feature to the large scale (low resolution) will naturally reduce
the nonlinearity in its position errors and introduced a multiscale
alignment (MSA) method that derives displacement vectors
more efficiently than the FAT. In the MSA, a model state is
decomposed into several scale components (SCs) that are up-
dated by the EnKF sequentially from the large to the small
scales. After each update, displacement vectors are derived from
the analysis increments and then used to warp the model grid to
reduce the position errors at smaller scales (assuming that large-
scale and small-scale displacement errors are coherent).

The multiscale approach is proven beneficial in large-
dimensional DA problems (Zhang et al. 2009; Miyoshi and
Kondo 2013; Buehner and Shlyaeva 2015; Caron and Buehner
2018). Decomposing the model state into SCs allows errors to
be represented separately at each scale. Ying (2020) formu-
lated a multiscale approach where both model states and
observations are decomposed into SCs, allowing flexibility
in the choice of filter parameters (localization, inflation,
etc.). The observation SCs are akin to idea of smoothing or
differentiating observations to extract information for DA
(Weng and Zhang 2012; Bédard and Buehner 2020; Sodhi
and Fabry 2022). In this study, we add the decomposition
of observation SCs as a new option in the MSA, which is
referred to as MSA-O.

The MSA/MSA-O method provides new means of repre-
senting the nonlinear error relation across scales through
the alignment steps, i.e., using large-scale errors to reduce dis-
placement errors at smaller scales. The existing multiscale
DA approaches (e.g., Li et al. 2015; Wang et al. 2021) do not
offer this capability since they only model the linear correla-
tion between errors at different scales (off-diagonal terms in
the error covariance matrix for SCs). In terms of treatment of
position errors, the vortex relocation approach arbitrarily re-
moves position uncertainties based on vortex position obser-
vation, while the FAT simultaneously reduces position errors
with other errors in minimizing a nonlinear cost function. The
MSA is similar to the FAT in finding displacements. However,
unlike the FAT, the MSA uses an iteration over scales for bet-
ter efficiency and to avoid local minima in minimization.

Although the MSA was shown to outperform the EnKF
(Ying 2019), several questions still remain about its perfor-
mance. First, will the MSA analysis be as good as the EnKF
analysis in a quasi-linear regime? Second, is the MSA robust,
i.e., does it guarantee a performance improvement for all
kinds of prior error conditions? Finally, the MSA inevitably
brings additional computational and tuning costs as the num-
ber of SCs increases. Does the improvement in performance
justify the additional cost? In this study, we design numerical
experiments using a simplified two-dimensional vortex model,
similar to the ones used in Chen and Snyder (2007) and Poterjoy
(2022) (the Rankine vortex example in his section 5), to stress-
test the MSA method and answer these questions. The model,
DA methods, and numerical experiments are described in

section 2. Results from idealized experiments are presented
in section 3. Cycling DA experiment results are presented in
section 4 to provide some insight for future implementation
and a discussion for potential issues in more realistic scenar-
ios. A summary of our findings is given in section 5.

2. Methodology

a. Model state and truth

The vortex model, detailed in appendix A, describes a non-
divergent horizontal wind field, v 5 (u, y), defined on a dou-
bly periodic uniform grid r 5 (x, y). The initial wind field
consists of a Rankine vortex and a background steering flow:

v(r) 5 vvort(r;Vmax, Rmw, a) 1 vbkg(r;Vbkg), (1)

where Vmax, Rmw, and a are the radius of maximum wind, max-
imum wind speed, and shape parameter for the Rankine vor-
tex, respectively; and Vbkg is the average of the initial random
k23 background wind speed.

Model physics is based on two-dimensional vorticity dynam-
ics, but we added a vorticity generation term to increase vortex
intensity when the maximum wind speed is lower than a critical
speed limit, simulating the rapid intensification process. Despite
its simplicity, the vortex model captures the key physical pro-
cesses and scale interactions in vortex dynamics, and the rapid
intensification is particularly interesting and challenging from a
DA perspective.

Let c be the state vector containing all model variables in
physical space, i.e., v(r) flattened into a vector, the model ad-
vances from time t to t1 1 as

ct11 5 mt"t11(ct; j, kg, sk, Vc, n), (2)

where m is the nonlinear model, j is the vorticity generation
coefficient, kg and sk control the spectral shape of the genera-
tion term, Vc is the critical speed limit, and n is the dissipation
coefficient.

For the truth (denoted with a star) c*, the vortex is placed
at the center of the domain, Vmax 5 35 m s21, Rmw 5 45 km,
and a5 1.5, while the background flow Vbkg 5 5m s21. Model
parameters are set as follows: the dissipation n 5 50 m2 s21,
the generation term j 5 8.3 3 1027 s21, kg 5 8, sk 5 3, and
Vc 5 75 m s21. With this setup, the simulated vortex intensi-
fies and reaches the speed limit in ;9 h, then its intensity oscil-
lates near this limit. However, adaptive time steps are required
to achieve steady simulation of this oscillation (otherwise numeri-
cal instability occurs). For the sake of simplicity we choose to
only run the model for 12 h and focus on DA experiments during
the rapid intensification period.

b. Ensemble forecasts

An ensemble of model runs characterize the forecast errors
prior to DA. Let n 5 1, … , N index the ensemble members.
The initial ensemble cn,t50 is generated through perturbing
the truth in several different ways to represent different sour-
ces of uncertainties. Figure 1 gives an example of vortex evo-
lution in an ensemble forecast.
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For member n, its initial wind field is

vn(r) 5 v*vort(r 1 r′n; Vmax,n, Rmw,n) 1 v*bkg(r 1 r′bkg,n) 1 v′n:

(3)

Here, r′n 5 (x′n, y′n) is a spatially constant vector field that dis-
places the wind field to represent position uncertainties,
where x′n and y′n are randomly drawn from a normal distribu-
tion N (0, Lsprd). The position spread Lsprd normalized by Rmw

is a good indicator of the degree of nonlinearity in wind errors
due to displacement, Lsprd/Rmw 5 0.2 is a quasi-linear regime
and Lsprd/Rmw 5 1 enters a highly nonlinear regime.

Vortex structure uncertainties can be accounted for by ran-
domly perturbing the Vmax and Rmw parameter for each mem-
ber as

Vmax,n 5 V*
max 1 V′

n, (4)

Rmw,n 5 R*
mw 1 R′

n, (5)

where V′
n ;N (0, Vsprd) and R′

n ;N (0, Rsprd).
The background flow is perturbed either in phase or out of

phase. In the in-phase scenario the background flow is dis-
placed along with the vortex (r′bkg,n 5 r′n; in phase with the
vortex position errors) and an additional additive noise is in-
cluded to account for other error sources in the wind field
(v′n). The additive noise is generated in the same manner as
the background flow but with a lower magnitude than the
background flow V′ 5 1:5m s21. In the scenario where the
background flow errors are out of phase with the vortex er-
rors, r′bkg,n 5 0 and V

′
is increased to 3 m s21 (in this case the

coherence assumption is broken).
Model errors can be introduced by perturbing the vorticity

generation coefficient j. In a perfect-model scenario, the forecast
model is the same as the true model (jn 5 j* 5 8:33 1027s21).

For imperfect models, jn is randomly drawn from a uniform dis-
tribution U(3:3, 10)3 1027s21, this range of values is low-biased
to mimic the behavior of real hurricane models that tend to un-
derestimate vortex intensity rather than to overestimate.

c. Observations

Let f be a vector containing the observations, and No be
the number of observed locations in the domain. Synthetic ob-
servations are generated from the truth as fo 5 h(c*)1 «o,
where h is the observation operator and «o ;N (0, s2

oI) is the
observation error. The observation errors are uncorrelated
(diagonal covariance), and so is the observation error standard
deviation.

Several different observation scenarios are considered in this
study (Table 1). First, in section 3a, we assimilate an observa-
tion at one single location (randomly placed in the domain) to
study its impact and the asymptotic behavior of the MSA
method. Here, in the Single_Wind_Obs scenario, the observa-
tion measures directly the u and y wind at a given location. In
this case, h consists mostly of linear interpolation coefficients,
and we set so 5 3 m s21. Then, in the Position_Obs scenario
[section 3a(2)] we consider a feature-based observation of the
vortex center position (xc, yc). The h operator in this case is
nonlinear, involving a search for the maximum in the vorticity
field. For position observations, we set so 5 0.1Rmw 5 4.5 km.
In section 3b, we assimilate several observations from a net-
work. Two different network geometries are tested: first, a global
network covering the entire domain (No 5 1000 randomly
placed locations, ;8% of which are within a 180-km radius of
the vortex center); second, a more realistic targeted network that
only has sparse observations within the vicinity of the vortex
(No 5 60 randomly placed locations, all within a 180-km radius
of the vortex center). Finally, in section 4, we conduct cycling
DA experiments, assimilating the targeted observation networks

FIG. 1. Vortex evolution from a 20-member ensemble forecast with initial vortex position error Lsprd/Rmw 5 0.2, no structure error,
out-of-phase background flow errors, and using the imperfect models. Vortex (a) tracks and (b) intensities are shown (colored lines for
members, black line for the truth). (c) The domain-averaged model state error (solid black line) and the averaged ensemble spread (dotted
line).
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(following the true vortex) that are available every 3 h during
the 12-h period (in 3 analysis cycles).

d. The DA method and experiments

DA finds the optimal combination of the prior ensemble
cb

n with the observations fo, so that the analysis ensemble ca
n

has minimum error while its spread matches this error. Here
we drop subscript t for simplicity since the analysis takes place
at the same time (filtering). The EnKF first computes obser-
vation priors (observed values based on prior model states):

fb
n 5 h(cb

n), (6)

then compares it with the observations to obtain an innova-
tion fo 2fb

n, which is used to update the state variables
through the error covariance:

cov(cb, fb) 5 1
N 2 1

∑
N

n51
(cb

n 2 hcbi)(fb
n 2 hfbi)T: (7)

The underlying ideas for the MSA method are decomposing
the model states into SCs and applying the EnKF updates
separately and utilizing the large-scale analysis increments to
derive displacement vectors that reduces position errors at
smaller scales.

Appendix B describes methods for scale decomposition.
Let Ns be the number of SCs. For scale s, the prior state be-
comes cb

n,s 5 Fscn, where Fs projects the model state onto
SCs. This prior state is updated by the innovation through a
cross-scale covariance cov(cb

s , f
b). We propose a new option

for the MSA, which we call MSA-O (the letter O stands for
observation), where the observations are also decomposed into
SCs fo

s 5 Fo
sf

o and used in correspondence with the state SCs,
with covariances cov(cb

s , f
b
s ), to reduce the scale mismatch dur-

ing the EnKF updates. Figure 2 illustrates the scale decomposi-
tion of u wind states and observations for theNs 5 4 case.

In this study, we choose the ensemble square root filter (EnSRF;
Whitaker and Hamill 2002; Tippett et al. 2003) to perform the
EnKF update. We refer to the MSA method using Ns SCs as
EnSRF_MSA_Ns, the MSA-O method as EnSRF_MSA-O_Ns.

Note that Ns 5 1 reverts to the original EnSRF, and the largest
Ns is 7, which is appropriate given the model grid resolution.
Appendix C provides a detailed formulation of the MSA/MSA-O
method.

To provide a benchmark for comparison, we run free model
forecasts from the prior ensemble without assimilation, which
is called the NoDA case. For single observation assimilation,
a simple PF analysis based on importance sampling (see
section 3 in van Leeuwen 2015) is computed to provide an-
other benchmark. The PF applies Bayes rule directly. The
prior weight for each member is 1/N, which is multiplied by
observation likelihood exp[2(fo 2fb

n)2/(2s2
o)], then normal-

ized across members to get the posterior weight. The proba-
bility distribution is then divided into N equal parts to obtain
the analysis ensemble members with equal weights again, in
which members with large weights are duplicated while those
with small weights are removed. The PF analysis converges to
the optimal solution as the ensemble size increases. However,
it is not feasible for an observing network with large No since
with computationally viable ensemble sizes its weights quickly
collapse causing filter degeneracy.

Table 1 summarizes all the test scenarios, in which the dif-
ferent filter methods are compared, and the next section de-
scribes the error metrics we used.

e. Evaluation metrics

The first error metric is the domain-averaged root-mean-
square state variable error (domain-averaged error for short):

«domain-avg 5 (hci 2 c*)T(hci 2 c*)
[ ]1/2

, (8)

where angle brackets h?i denote an average over the ensemble
members and the overbar ( ? ) denotes an average over the
state variables (over the domain).

Three feature-based metrics help further characterize errors
in simulated vortex features: position, intensity, and size. The
vortex position is found by searching for the maximum vortic-
ity in the domain. The vortex intensity is defined as the maxi-
mum wind speed. The vortex size Rsize characterizes the area
of large wind speeds, it is derived from the azimuthal-average

TABLE 1. List of scenarios and their corresponding configurations in prior ensemble (spread in vortex position, intensity and size,
background flow types), assimilated observation type, and forecast model. Multiple values are listed for a parameter if they are tested
in a sensitivity experiment. For the cycling experiments (section 4), the vortex and background flow configurations in the table are
for the initial conditions.

Section Scenario Lsprd/Rmw Vsprd/Vmax Rsprd/Rmw Background flow Obs type Model

3a Single_Wind_Obs 0.2, 0.4, 0.6, 0.8, 1 0 0 } Single (u, y) }

Position_Obs 0.2, 0.4, 0.6, 0.8, 1 0 0 } (xc, yc) }

3b Baseline 0.2, 0.6, 1.0 0 0 In phase Global (u, y) }

Incoherent_BkgFlow 0.2, 0.6, 1.0 0 0 Out of phase Global (u, y) }

Vmax_Error 0.6 0.06, 0.26 0 In phase Global (u, y) }

Rmw_Error 0.6 0 0.1, 0.2 In phase Global (u, y) }

Targeted_Network 0.2, 1.0 0 0 In phase Targeted (u, y) }

4 Baseline 0.6 0 0 In phase Targeted (u, y) Perfect
Incoherent_BkgFlow 0.6 0 0 Out of phase Targeted (u, y) Perfect
Vort_Struct_Error 0.6 0.06 0.1 In phase Targeted (u, y) Perfect
Imperfect_Model 0.6 0 0 In phase Targeted (u, y) Imperfect
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wind profile V(R) relative to the diagnosed vortex center, so
that V(Rmw # R # Rsize) . 15 m s21 (this value is arbitrarily
chosen, for hurricanes the threshold is usually higher to relate
to destructive winds). These diagnostic features are commonly
used in the hurricane community (e.g., Zhang et al. 2009).
Note that the size feature is not the same as Rmw, since it also
depends on Vmax (intensity feature).

Let hfeature denote the operator from model state to one of
the diagnostic features. Due to its nonlinearity, the mean of
features from members does not equal the feature from the
ensemble mean. We thus define ensemble-averaged feature
errors as

«feature 5 h[hfeature(c) 2 hfeature(c*)]2i1/2: (9)

In sections 3a and 3b, we present errors diagnosed from the
posterior ensemble (final analysis) for each DA method. In
section 4 (cycling DA) we present both the errors from the
posterior ensemble at the analysis cycles and the ensemble
forecasts to the end of DA period.

3. Idealized experiment results

a. Assimilation of observations at a single location

1) ASYMPTOTIC BEHAVIOR OF THE MSA METHOD

We first test how the MSAmethod performs asNs increases
using the Single_Wind_Obs scenario. Since there is only one
location observed in space, it is not possible to decompose ob-
servations into SCs (MSA-O is not tested here). We test the
EnSRF_MSA with Ns 5 1–7.

We first run the experiment once using a large ensemble
size N 5 200 without localization and visualize the filter up-
dates in physical space in a moderate-nonlinearity scenario
(Lsprd/Rmw 5 0.6). Figure 3 compares wind contours from the
analysis ensemble (members with different colors). The origi-
nal EnSRF analysis suffers most from nonlinearity, vortices
with larger position errors become deformed after the linear
updates. On the other hand, the PF analysis perfectly pre-
serves vortex structure in each member by design. The
EnSRF_MSA analyses improve as Ns increases in that the

FIG. 2. Illustration of scale decomposition of model state and observation for Ns 5 4: (a) kinetic energy spectra (u2 1 y2)/2 for the total
state (black line) and for each SC (colored lines), (b) u wind state, (c) observed u wind from the targeted network, (d)–(g) u wind state SCs
for s5 1–4, and (h)–(k) observation SCs for s5 1–4.
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vortices are less deformed as they are nudged closer to the
truth. There is no guarantee that the MSA method preserves
vortex structure and there is still a slight deformation even for
Ns 5 7.

Figure 4 shows wind speed maps from one ensemble mem-
ber that is displaced to the southeast in the prior. The EnSRF
assimilates the observation at 1 and inserted a new vortex
near the true position, but the linear update is not enough to
completely remove the prior vortex, causing the analysis vor-
tex to be elongated. A special case EnSRF_MSnoA_5, where
the MSA is applied without the alignment steps (similar to
multiscale DA approaches), shows that multiscale DA alone
does not improve the result. EnSRF_MSA_5 shows that dis-
placement steps greatly contribute to the improvement of vor-
tex structure. Figures 4e–h illustrate the displacement vectors
derived from the EnSRF update at s 5 1–4, the warping of the
grid gradually nudges the vortex toward truth, improving its po-
sition accuracy but at a slight cost of distortion of structure.

Figure 5 shows the bivariate relations between the observa-
tion (located at the 1 sign in Fig. 3) and one state variable
(located at the 3 sign in Fig. 3) during DA. The EnSRF
makes linear updates so the assimilation of u and y observa-
tions shows as two sets of parallel line segments, which tend
to push members away from the main cluster in the prior dis-
tribution. Although the final analysis ensemble mean gets
much closer to the truth, some members have unphysical val-
ues in wind that correspond to the deformation of vortices.
The PF update line segments are not parallel and the analysis
members converge near the true values. The MSA method
behaves more like the nonlinear PF update as Ns increases,
the members are moved closer to the truth through the se-
quential updates over the SCs.

Now we test the robustness of this asymptotic behavior
with 1000 random realizations (trials) using a smaller ensem-
ble size (N 5 20) for the EnSRF and EnSRF_MSA, but the
PF benchmark is run with larger ensemble size (N 5 500).
Localization is not applied when assimilating the single obser-
vation. The left column of Fig. 6 summarizes the analysis
errors averaged over these realizations.

For domain-averaged errors (Fig. 6a), the EnSRF_MSA
method using larger Ns is better than the EnSRF in nonlinear re-
gimes. As nonlinearity increases, a larger Ns is required to obtain
the best analysis. In the quasi-linear regime (Lsprd/Rmw 5 0.2),
the EnSRF analysis is the best while the EnSRF_MSA analy-
ses are worse. The degradation is due to vortex intensity errors
(Fig. 6e) introduced by the alignment steps. The grid warping
is a slightly diffusive process due to the use of an Eulerian
grid. Since the Rankine vortex wind profile is nondifferentia-
ble at the peak, it is difficult to preserve wind maxima when
the displacements are not an integer number of grid spacings
and the wind maxima end up in between grid points and get
weakened during interpolation. The vortices are weakened by
;2 m s21 after warping in EnSRF_MSA (this issue can be re-
solved by using higher-order interpolation or a Lagrangian
mesh to describe model state). When we introduce a little nonli-
nearity by increasing position spread (Lsprd/Rmw # 0.2), the
EnSRF analysis becomes more suboptimal and EnSRF_MSA
consistently outperforms the EnSRF. Vortex structures are dis-
rupted in the EnSRF analyses due to the linear updates, causing
large intensity and size errors. Note that the EnSRF analysis
tends to overestimate the wind maxima while the alignment
steps underestimate them.

The PF perfectly preserves vortex features for each member
by design, thus its intensity and size errors are close to zero
(not exactly zero because of the round-off errors in hfeature). In
the limit of N " ‘, the PF analysis ensemble represents the
true Bayesian posterior distribution. However, in nonlinear
regimes, the PF posterior mean has large variance of position
errors and domain-averaged errors, while the EnSRF_MSA
with larger Ns seemingly outperforms the PF. This is caused
by the multimodality of the true posterior distribution given
some observations that are ambiguous in matching the prior
wind field (next subsection provides a more detailed discus-
sion). For these observations, the PF posterior mean has near
zero likelihood of being the truth since it is in between the
modes of the posterior distribution. Even with very large
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FIG. 3. Ensemble spaghetti plots of wind speed contours at
20 m s21 for (a) NoDA, (b) EnSRF (Ns 5 1), (c)–(e) EnSRF_
MSA (Ns 5 3, 5, and 7), and (f) PF for the Single_Wind_Obs sce-
nario with Lsprd/Rmw 5 0.6. The1 sign marks the observation loca-
tion and 3 marks the state variable location for Fig. 5. The first
20 members are plotted in color and the true contour in black.
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ensemble size (N 5 500 is used, we have also tried N 5 20000
that exceeds the state dimension without seeing much im-
provement), the PF still produces larger domain-averaged errors
in the nonlinear regime (Lsprd/Rmw 5 1) due to this multimodal-
ity. The EnSRF_MSA seemingly produces a more accurate pos-
terior mean than the PF when Ns increases. This is because the
larger-scale SCs are less multimodal in terms of observation like-
lihood and the alignment steps tend to collapse the posterior dis-
tribution over the correct mode, though at a risk of overfitting
the large-scale observation information.

2) SENSITIVITY TO OBSERVATION TYPE AND LOCATION

A single wind observation with 63 m s21 error is less infor-
mative than a position observation with an error of 64.5 km.
Especially when the wind observation is placed farther away
from the vortex center, it only provides limited information
about the vortex itself. To compare to the Single_Wind_Obs
scenario, we use the Position_Obs scenario to test the direct
assimilation of vortex position observations and results are
shown in the right column of Fig. 6.

In nonlinear regimes, EnSRF_MSA_7 reaches the best per-
formance in the Position_Obs scenario no matter how much
nonlinearity arises from different Lsprd, while its performance
degrades as Lsprd increases in the Single_Wind_Obs scenario.
This shows that the position observations have more impact.
However, assimilating position observations is quite challeng-
ing using the EnSRF (or when Ns is small for EnSRF_MSA).
Because the mapping between the observation space (posi-
tion) and the state space (winds) is highly nonlinear, the

EnSRF is suboptimal and causes distortion of the vortex
structures. These distortions are even worse (larger intensity
and size errors) in the Position_Obs scenario compared to the
Single_Wind_Obs scenario, in agreement with Chen and
Snyder (2007) who documented vorticity distortion after as-
similating position observations.

The information content of wind observations depends on
their locations relative to the true vortex center Robs. Obser-
vations near Rmw have the highest observed wind speeds
(;40 m s21) and with the fixed instrument error of 63 m s21

these observations have lower percentage errors (we did not
consider the case of real wind observations where observation
errors increase with wind speeds). Figure 7 shows the domain-
averaged errors (from Fig. 6a) again but with the 1000 trials
further categorized into five bins with respect to observation
location Robs/Rmw. In the linear regime (Lsprd/Rmw 5 0.2),
observations farther away (Robs/Rmw . 1.2) cause the degra-
dation in EnSRF_MSA analyses. In the nonlinear regime
(Lsprd/Rmw 5 1), all observations reduce errors; however, the
biggest improvements come from assimilating observations
near the maximum wind (Robs ’ Rmw) and near the vortex
center (Robs ’ 0). The PF posterior mean has large errors when
observations are near the vortex center (Robs/Rmw , 0.8) with
low wind speeds. Because both observations from the center
and farther outside have low wind speeds, weights are assigned
to both members that match the low wind speeds, causing the
posterior distribution to be multimodal (ambiguous observation
likelihood). The posterior mean is arguably not a good indicator
for the PF performance, since it has low probability of being the
truth when the true distribution is multimodal. On the other
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FIG. 4. Vortex from member 1 compared for (a) NoDA, (b) EnSRF, (c) multiscale EnSRF without alignment (EnSRf_MSnoA_5), and
(d) EnSRF_MSA_5. (e)–(h) Intermediate stages after scale iteration s5 1–4 during EnSRF_MSA_5. Wind speed (m s21) is shown in gray
shadings, the 20 m s21 contour is highlighted in red, and the true contour in black. The observation is located at the 1 sign. Displacement
vectors derived for each scale are shown in (e)–(h).
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hand, the EnSRF_MSA does collapse the posterior ensemble
over the correct mode even though the true Bayesian posterior
is multimodal. The larger-scale SCs are less ambiguous when
matching with the observations. The alignment produces a
more accurate posterior mean, but at a risk of overfitting the
large-scale information from the observations, since the true
Bayesian posterior is supposed to be multimodal.

b. Assimilation of observation networks

1) TUNING FOR BEST MULTISCALE LOCALIZATION

In this subsection, we perform manual tuning to select the
localization parameters for a multiscale framework. Two pa-
rameters are tuned through empirical evaluation: the radius of
influence (ROI) and the amplitude factor a (see appendix C
for definition). The tested values are ROI 5 8, 12, 16, 20, 24,
28, 32, 40, 48, 64 grid points and a 5 0, 0.1, 0.2, … , 1, which re-
sults in 110 cases in total. For each case, 100 trials are run where
the global network is assimilated to update a prior ensemble
(N 5 20 members) with position spread Lsprd/Rmw 5 0.6 and
out-of-phase background flow errors.

The filter update for only the first SC in EnSRF_MSA_Ns

is diagnosed for domain-averaged errors. Figure 8a shows the
range of parameters that yields good performance (best per-
formance marked as a star). As Ns increases, the first SC cor-
responds to larger scales and there is a bigger scale mismatch

between the observations and the states. The best ROI increases
with the underlying correlation scale, which is expected. On the
other hand, the best a decreases as Ns increases, and the reasons
are twofold. Because the bigger scale mismatch introduces more
sampling noise that is not necessarily distance-dependent, reduc-
ing a helps reduce the impact of the noise. Also, as a larger ROI
is favored for the larger scale, more observations are participating
in the update, reducing a helps to prevent overfitting the
observations.

Localization for the MSA-O algorithm is tuned in the same
manner and results are shown in Fig. 8b. In this case, since ob-
servations are also decomposed to SCs, the scale mismatch is
much reduced in the update step, which requires less a adjust-
ment (i.e., a is closer to 1). However, the best performance
still comes from a , 1 as in the MSA case, only a much wider
range of parameters give relatively good performance (cf. the
purple lines, Ns 5 7). The MSA-O algorithm requires smaller
a than the MSA when updating smaller scales (cf. red lines,
Ns 5 2), because the difference between the irregular obser-
vation network and the uniform model grid (see Fig. 2) fur-
ther introduces discrepancies between the observation space
and state space. Based on these findings, we configure the
MSA in the following experiments with the best-performing
localization parameters, which are listed in Table 2. The
MSA-O configuration (not listed) is very similar to the MSA,
only a few differences for small Ns.

FIG. 5. Scatterplots showing the bivariate relation between the observed (a)–(c) u and (d)–(f) y variable with a u state variable being up-
dated (in this case y axes show the predictor and x axes show the predictand). The position of the observation is located at the 1 sign in
Fig. 3 and the state variable at the 3 sign in Fig. 3. Three methods are shown: (left) EnSRF, (center) EnSRF_MSA_5, and (right) PF.
Gray lines mark the true values and red lines mark the observed values. Green circles are the prior ensemble and blue triangles are the
analysis ensemble. Line segments are plotted to show the intermediate stages for 5 members: for the EnSRF case, one segment for assimi-
lating u, then another segment for assimilating y ; for the EnSRF_MSA_5 case, one segment for each scale iteration s 5 1, … , 5; for the
PF case, only one segment is shown.
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We do not expect the best localization parameters for scale
s 1 1 to depend on those for scale s (hence no need for itera-
tive tuning). The best parameters for a range of characteristic
scales have been identified in our tuning for s 5 1, Ns 5 1–7.
We use these results to guide the choice for s 5 2–Ns listed in
Table 2. For example, in Ns 5 7 the s 5 2 setting comes from
the Ns 5 5; s 5 1 result, since they are at about the same spa-
tial scale. Although they are not exactly the same SC (only
matching characteristic wavenumber), we believe this ap-
proach is sufficient, given that the performance is not that sen-
sitive to exact choice of parameters (see wide range of good
performance in parameter space in Fig. 8).

2) SENSITIVITY TO UNCERTAINTIES OTHER

THAN POSITION

We created scenarios with different sources of initial uncer-
tainties, in background flow (Incoherent_BkgFlow) and in
vortex structure (Vmax_Error and Rmw_Error), to test the
robustness of the MSA performance. Figure 9 compares the
EnSRF_MSA performance under these scenarios.

The MSA method is built on the assumption that small-
scale features and large-scale patterns are coherent so that
the large-scale updates can be utilized to correct for errors in
the small-scale features. However, it is debatable whether this
assumption holds for all geophysical modeling scenarios. In

FIG. 6. Error boxplots showing the interquartile range of error metrics [(a),(b) domain-averaged; (c),(d) vortex
position; (e),(f) intensity; and (g),(h) size errors] obtained from 1000 trials. Two scenarios are compared: (left)
Single_Wind_Obs and (right) Position_Obs. Cases with varying nonlinearity (Lsprd/Rmw from 0.2 to 1.0) are tested. In
each case, results are shown for NoDA (gray), EnSRF (white), EnSRF_MSA_Ns (blue, Ns 5 1–7 from left to right),
and PF (dark green). Note that NoDA and PF results are hard to see in intensity and size errors since they are very
close to zero.
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Incoherent_BkgFlow, we test how the MSA method behaves
when deviating from the coherent assumption. The incoherent
background flow errors (see section 2b for details) are challeng-
ing for theMSA. Notice in Fig. 9f how the EnSRF_MSA analysis
becomes worse than the EnSRF analysis as Ns increase (some
improvement can be seen as Ns keep increasing, but still worse
than Ns 5 1). In the large-scale SC, there are both vortex-scale
features projected to the large scale and the large-scale back-
ground flow uncertainties themselves. In Incoherent_BkgFlow,
the alignment step can sometimes displace the vortex errone-
ously according to analysis increments after correcting the addi-
tive noise in the background flow, which increases the vortex
position errors and degrades the analysis. In Baseline, the MSA
method works as expected with best performance.

In Vmax_Error and Rmw_Error, the uncertainties in vortex
structure are accounted for by varying the two parameters during
generation of the initial Rankine vortex. Figures 9g and 9h show
that the additional uncertainties do not impact the performance of
the MSA as the position errors are reduced as expected when Ns

increases. Perturbing Vmax increases both vortex intensity and size
errors in the analysis (size also depends on Vmax due to its defini-
tion). PerturbingRmw increases vortex size errors in the analysis.

For all scenarios, the intensity errors first decrease then in-
crease whenNs increases from 1 to 6 (Figs. 9i–l). EnSRF (Ns5 1)

tends to overestimate the vortex intensity with occasional overfit-
ting to local observations of peak wind speeds. On the other
hand, EnSRF_MSAwith largeNs tends to underestimate the vor-
tex intensity because of the alignment and warping of the grid
weakens the vortex [see discussion in section 3a(1)]. Some degra-
dation in vortex size can be seen for larger Ns (Figs. 9o,p). See
Figs. 4e–h how the vortex becomes more asymmetric as more
warping steps are applied. As a network of many observations is
assimilated here, the smaller-scale analysis increments and the dis-
placement vectors introduce even more distortion to the wind
field (compared to the single observation results in Fig. 4).

3) SENSITIVITY TO OBSERVATION DENSITY

AND COVERAGE

This subsection tests the sensitivity of the MSA/MSA-O
performance to different observation density and coverage

FIG. 7. Boxplots for domain-averaged wind errors (as in Fig. 6a)
but summarized individually with respect to position spread (Lsprd/
Rmw, increasing from left to right) and vicinity of wind observation
to the true vortex center (Robs/Rmw, increasing from bottom up).
With the five categories, there are about 200 trials in each.

FIG. 8. Tuning of the localization ROI (in units of number of Dx)
and amplitude parameter (a) for updating the first SC using (a) the
MSA and (b) the MSA-O algorithms. Domain-averaged wind er-
rors are obtained from 100 trials for each combination of parame-
ters and tested for cases with Ns from 2 to 7 (color-coded). The
best performance (minimum error) for each case is marked with a
star, the contours indicate the range of parameters that achieve an
error within 1% of the best performance.
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(i.e., its information content). Two types of observing network
are considered: the global network is denser with coverage of
the entire domain (No 5 1000), while the targeted network is
more sparse (No 5 60) and is only deployed near the vortex

center (within 180 km radius, see Fig. 2c for a visualization).
Figure 10 compares the performance of EnSRF_MSA and
EnSRF_MSA-O (Ns 5 1–4) when assimilating these two
types of observations.

Let us first look at the quasi-linear regime (Lsprd/Rmw 5 0.2) in
Global_Network. Decomposition of observation SCs in MSA-O
improves position accuracy compared to MSA (Fig. 10c) but
at a cost of degrading the domain-averaged error (Fig. 10a).
Comparing the state SCs (Figs. 2d–g) with the observation
SCs (Figs. 2h–k), we see that the smaller scales have significant
mismatches due to differences in grid geometry. When No is
not large enough, aliasing may occur. Although the MSA-O
benefits from assimilating the large-scale observation SCs with
better match to the state SCs, the inaccuracies in the scale de-
composition (mostly at small scales, k . 8) bring negative

FIG. 9. Comparison of error boxplots (from 100 trials) among NoDA (gray), EnSRF (white), and EnSRF_MSA_Ns (blue;
Ns 5 2–6 shown from left to right). Four scenarios with different initial condition uncertainties are tested (a),(e),(i),(m) Baseline;
(b),(f),(j),(n) Incoherent_BkgFlow; (c),(g),(k),(o) Vmax_Error; and (d),(h),(l),(p) Rmw_Error (see Table 1 for details). Four error
metrics are shown from the top to bottom rows.

TABLE 2. Tuned localization parameters (ROIs and as for
s 5 1, … , Ns from left to right) for the MSA method.

Ns ROIs (Dx) as

1 16 1
2 16, 8 0.8, 0.9
3 18, 12, 8 0.7, 0.7, 0.8
4 20, 16, 12, 8 0.5, 0.5, 0.7, 0.8
5 22, 20, 16, 12, 8 0.4, 0.4, 0.6, 0.7, 0.8
6 24, 22, 20, 16, 12, 8 0.4, 0.4, 0.5, 0.7, 0.8, 0.8
7 26, 22, 20, 18, 16, 12, 8 0.3, 0.3, 0.4, 0.5, 0.7, 0.8, 0.8
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impacts. In real implementations, the smaller-scale observation
SCs can be discarded (i.e., not assimilated) to avoid the negative
impact if its accuracy is low. As Ns increases, the MSA/MSA-O
also tends to weaken the vortex intensity (Fig. 10e) due to warp-
ing of the grid [see section 3a(1)]. The size accuracy (Fig. 10g)
does not monotonically improve as Ns increases, larger Ns de-
grades the size feature, probably because the MSA/MSA-O
overfits the small-scale pattern emerging from the observations
that are contaminated by aliasing noises. In the nonlinear regime
(Lsprd/Rmw 5 1), the behavior of MSA/MSA-O is the same. Since
higher nonlinearity occurs in the prior errors the MSA/MSA-O
consistently outperforms the single-scale EnSRF.

Using Global_Network as a baseline, now we compare the
performance in Targeted_Network. Notice that the global net-
work constrains the domain-averaged errors much better than
the targeted network, thanks to its better information content.
For Targeted_Network in the nonlinear regime (Fig. 10b), the
benefit from using observation SCs (MSA-O) out-weights the
negative impact from observation SC inaccuracies. Position
rrors (Fig. 10d) show that MSA-O performs better than MSA

when assimilating the targeted network. Because the targeted
network has smaller-scale vortex information dominating the
larger-scale background flow information, the observation SCs
help to extract information about the large scales in MSA-O,
which helps to reduce position errors after assimilation.

4. Cycling data assimilation experiments

In this section, we test the MSA/MSA-O algorithms in a
cycling DA setting to provide some context for real applica-
tion scenarios such as hurricane forecasts. Four scenarios are
tested: Baseline, Incoherent_BkgFlow, Vort_Struct_Error, and
Imperfect_Model (see Table 1). For each scenario, the targeted
observing network is assimilated every 3 h during a 12-h period,
the cycling DA is performed for 100 trials over which the error
metrics are evaluated from both the analysis ensemble and the
ensemble forecasts to the end of the period.

One important constraint we place on the MSA/MSA-O
algorithms is that a smaller ensemble size is used for larger Ns

so that all methods are compared at equal computational cost.
Ensemble size is 30 for NoDA and EnSRF, and 28, 25, and 22
for Ns 5 2, 3, and 4. A larger Ns effectively increases the state
vector size (see Ying 2019) that is offset by reducing the en-
semble size. The extra cost in the alignment step is also bal-
anced by the reduced number of model runs in the ensemble
forecast step.

Figure 11 compares the analysis and forecast error boxplots
from different methods for each test scenario, and Fig. 12
shows the corresponding error time series, averaged over 100
trials. As discussed in section 3b(3), the MSA-O approach is
better than the MSA when assimilating the targeted network.
The errors are consistently smaller from EnSRF_MSA-O
than EnSRF_MSA, and the EnSRF_MSA-O_3 method pro-
duces the best overall performance.

In the Baseline scenario, the analysis domain-averaged
errors are smaller in EnSRF_MSA-O than in EnSRF, but the
difference are small among different Ns, because the targeted
network only updates near the vortex, which is a small portion
of the entire domain. Clearer differences are seen for the fea-
ture errors: MSA-O with increasing Ns further reduces the
position and intensity errors, but the improvement for size
errors stops at Ns 5 3 and starts increasing back for Ns 5 4.
For the forecasts, EnSRF_MSA-O_3 is the best-performing
method. EnSRF_MSA-O_4 is struggling at vortex position
and size in the forecasts. The error time series suggest that er-
ror grows more rapidly after the EnSRF analyses (black lines)
than the EnSRF_MSA-O_3 analyses (red lines), especially for
the vortex position errors (Fig. 12e). Although the EnSRF
analysis is already very accurate according to the domain-
averaged errors, some physical imbalances (large local wind
maxima that are not axisymmetric in the vortex) are intro-
duced when overfitting local observations and overestimating
intensity (see increased intensity error in Fig. 12i). The more
rapid forecast error growth also indicates such imbalances.
On the other hand, the MSA-O method is designed to better
preserve the vortex physical balance while reducing position
errors at the same time. The drawbacks from the MSA-O us-
ing larger Ns . 3 is that it tends to overfit the large-scale SCs

FIG. 10. Comparison of error boxplots (from 100 trials) among
NoDA (gray), EnSRF (white), EnSRF_MSA (blue; Ns 5 2–4
shown from left to right), and EnSRF_MSA-O (red; Ns 5 2–4
shown from left to right). Two scenarios are tested: (left) assimilat-
ing global network (Baseline) and (right) Targeted_Network. For
each scenario, three cases with Lsprd/Rmw 5 0.2, 0.6, and 1.0 are
tested. Four error metrics are shown from top to bottom.
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and collapse ensemble spread in position prematurely (not
shown), so that when assimilating the small-scale SCs there is
not enough prior spread to allow sufficient increments. The
smaller-scale observation SCs becomes more contaminated
with aliasing noises (see Figs. 1h–k), the vortex maximum wind
features in s 5 4 already has very low signal-to-noise ratio,
which is why increasing Ns beyond 3 does not bring additional
benefits to outweigh the side effects of warping. For Ns 5 2
and 3, however, the MSA-O method clearly improved the
smaller-scale vortex features through better utilization of the
observed information.

In the Incoherent_BkgFlow scenario, the larger initial un-
certainties in background flow cause more rapid position error

growth and overall larger vortex size errors than the baseline.
NoDA position errors exceed 100 km (off chart in Fig. 11f).
For the analysis, the EnSRF has the best performance. How-
ever, EnSRF_MSA-O_2 gives the overall best forecasts so it
has an advantage over the EnSRF (Fig. 11). The deviation
from the coherent assumption [see section 3b(2)] is also
among the reasons why larger Ns does not further improve the
MSA-O results. The behavior of the EnKF having better anal-
ysis but worse forecasts is also reported by other studies (e.g.,
Poterjoy et al. 2017; Poterjoy 2022). Inspection of the EnSRF
ensemble spread (not shown) indicates that its forecast spread
is also larger and its analysis spread is smaller than those from
the EnSRF_MSA-O. This confirms that the EnSRF tends to

FIG. 11. Cycling DA experiments: comparison of error boxplots (from 100 trials) among NoDA (gray), EnSRF (white), EnSRF_MSA
(blue), and EnSRF_MSA-O (red). Four scenarios are tested: (a),(e),(i),(m) Baseline; (b),(f),(j),(n) Incoherent_BkgFlow; (c),(g),(k),(o)
Vort_Struct_Error; and (d),(h),(l),(p) Imperfect_Model. Four error metrics are shown (from top to bottom) for the analysis (averaged
over cycles at t5 3, 6, and 9 h) and forecast (averaged over the three forecasts at t5 12 h).
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overfit the observations, causing physical imbalances and more
rapid error growth in the forecasts.

The Vort_Struct_Error scenario does not differ too much
from the Baseline. With additional uncertainties in the initial
vortex structure, the intensity and size errors (Figs. 11k,o) in-
crease for NoDA. But the EnSRF is still able to reduce errors,
even a bit more for the intensity and size errors thanks to the
increased initial ensemble spread in vortex features. The
MSA/MSA-O behave as expected in further improving over
the EnSRF.

For the Imperfect_Model scenario, the additional model
uncertainties cause much larger errors in vortex intensity than
the Baseline, while the position and size errors remain low.
NoDA has intensity error off the chart in Fig. 11l. Despite
this additional challenge, EnSRF_MSA-O_3 is still superior
to the EnSRF for all error metrics except the vortex intensity.

This result suggests that the alignment step works as long as
patterns exist for the feature of interest (vortex structure in
this case). When there are additional amplitude errors in the
patterns being aligned, the alignment algorithm still works ro-
bustly. These amplitude errors caused by model uncertainties,
however, are independent of the position errors, they lead to
higher vortex intensity errors, for which the MSA/MSA-O
does not improve over the EnSRF.

5. Conclusions and discussion

In this study, we stress test the MSA method of Ying (2019)
in a simplified two-dimensional vortex model similar to that
of Chen and Snyder (2007), which allows easier creation of vari-
ous test scenarios and separation of different error sources (vor-
tex position errors, structure errors, background flow errors and

FIG. 12. As in Fig. 11, but showing averaged error time series from the 100 trials. In each panel, errors from NoDA (gray), EnSRF
(black), EnSRF_MSA_3 (blue), and EnSRF_MSA-O_3 (red) are compared. Analysis cycles take place at t 5 3, 6, and 9 h. Forecasts are
run from the analysis time to the end of the period (t5 12 h) and marked as dotted lines with corresponding colors.
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model errors). The asymptotic behavior of the MSA method is
first demonstrated. As Ns increases, the EnSRF_MSA analysis
errors decrease, approaching what can be achieved by a particle
filter. We show that the best Ns depends on the degree of nonli-
nearity caused by initial position spread Lsprd. As position
errors increase a largerNs is required to achieve the best perfor-
mance. The observation type (u, y wind, or position observa-
tions) and the location of the observation relative to the vortex
center (Robs) change the information content for a single obser-
vation. The EnSRF_MSA method is less sensitive to observation
location and can extract information from feature-based ob-
servations better than the original EnSRF. The correction of
vortex location will precondition the small-scale features in
the prior so that observations of these features can be better
assimilated. However, we also revealed several processes that
limit the robustness of the benefits (incoherence across scales,
aliasing noises in small scales, and weakening of vortex due to
linear interpolation).

A coherence assumption is made in the MSA method to re-
duce position errors in small scales according to large-scale
analysis increments. A deviation from the coherence assump-
tion is shown to degrade the performance of the MSAmethod.
When background flow errors are independent (out of phase)
of the vortex position errors, the interference from these
background flow errors lead to misalignment of the vortices.
It is unclear how frequently this incoherence between large-
scale and small-scale features occurs in real geophysical pre-
diction problems. To remedy this issue, we suggest further
incorporating an adjustment term in the displacement vec-
tors to scale their impact on the smaller scale. The adjust-
ment term can be diagnosed from the ensemble-estimated
cross-scale covariance (off-diagonal parts of the multiscale
covariance; Fig. 6 in Buehner and Shlyaeva 2015). Incoher-
ence between large- and small-scale components will result
in lower cross-scale covariance, then the adjustment term
will taper the displacement vectors accordingly. Another
option worth trying is to first decompose the model state
into individual components that are incoherent with each
other, then perform the MSA analysis separately for each.
In general, disentangling the independent components and
updating them separately seems a good strategy in DA to
achieve better performance for each component.

When assimilating a network of observations, the addi-
tional decomposition of observation SCs is introduced as a
new option, MSA-O, which is shown to perform better than
MSA, especially when assimilating limited observation infor-
mation (the targeted network), thanks to the reduced scale
mismatch between observations and state variables during
the filter update. The extraction of observation SCs (could be
stated as an optimization problem itself) is not necessarily
easy and is prone to aliasing errors, especially when observa-
tions are sparse and only with partial coverage. However, the
benefits from assimilating observation SCs instead of the raw ob-
servation (e.g., Bédard and Buehner 2020; Sodhi and Fabry
2022) often outweigh these drawbacks. In our study, the MSA-O
method has consistently better performance than the original
EnSRF in all the test scenarios.

While this study provides further proof of concept of the
MSA method and its feasibility, we do expect some more chal-
lenges in real applications. Model biases can be much more se-
vere in real models; features of interest can be completely
missing in the forecasts compared to the observations. The
MSA method is not expected to work in such extremely non-
linear scenarios. On the other hand, in the quasi-linear regime,
the EnSRF method is already the best algorithm so the MSA
method cannot improve. Thus, in practice a test for nonlinear-
ity (e.g., Poterjoy and Anderson 2016; Kurosawa and Poterjoy
2023) may be necessary to determine which DA method to
use in the analysis. When applying the MSA method, the best
choice for Ns may depend on how much nonlinearity there is
in the system, it may also depend on the observing networks
(sparse observations may prevent the use of large Ns due to
lack of information at small scales). Nonlinearity and observa-
tion availability may vary across the domain, for example, an
atmospheric model might have most of its domain in quasi-
linear regimes and only nonlinear regimes along the sharp gra-
dients in frontal zones. For such scenarios, the MSA can be
applied in a local analysis, i.e., the frontal zone can be isolated
in a subdomain within which the DA analysis takes place. Sim-
ilar to the idea of nested domains with different resolution, the
MSA method can be applied to child domains where high non-
linearity occurs, and not the parent domain where the EnKF is
already optimal in the linear regime.

Arguably, the simple vortex model results can be too opti-
mistic since the model does not capture the intricate inner-
core dynamics of a real three-dimensional vortex, especially
how its asymmetric features interact with its environmental
conditions, which are the current forecast challenges. Com-
plications can arise in the implementation in a full-physics
multivariable model, some treatment of topography and
lower boundary conditions in deriving displacement vectors
can be found in Nehrkorn et al. (2014). The results from this
study only provide some initial guidance and should not
be interpreted generally for all model systems. Future stud-
ies shall also investigate the possibility to extend the two-
dimensional displacement vector fields to three- or even
four-dimensional (include the time dimension to reduce
timing errors).

We pay extra attention to computational cost when com-
paring the MSA with the original EnSRF method. Our results
suggest that}at equal cost}the MSA-O algorithm consis-
tently outperforms the EnSRF in nonlinear regimes, suggest-
ing that it is scalable to larger problems. In practice, the cost
of tuning filter parameters, such as localization and inflation,
is also nonnegligible. The manual tuning of localization pa-
rameters in this study would be infeasible in realistic models.
The use of adaptive algorithms may thus be needed to pro-
vide online estimation of the best parameters, without the
need for a priori tuning. Based on the localization literature
(e.g., Ying et al. 2018, and references therein), the best locali-
zation distance depends on the physical correlation scale of
the dynamical system, the ensemble size, and the observation
density. For localization, adaptive algorithms (Zhen and Zhang
2014; Moosavi et al. 2018; Cheng et al. 2021) and empirical
localization functions (e.g., Anderson and Lei 2013; Lei and
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Anderson 2014) can be used to automate the tuning. We did
not apply any covariance inflation in our study for the sake
of simplicity, but for numerous cycles and more complex
models, we expect inflation to be necessary. Adaptive algo-
rithms are also available (e.g., El Gharamti 2018) to auto-
mate the tuning of inflation. For alignment techniques, inflation
methods based on location uncertainties can also be consid-
ered (e.g., Zhen et al. 2022). In realistic applications, the
truth is unknown and errors are mixed from different sour-
ces, which pose challenges to the tuning of DA algorithms.
Findings from this study should provide some initial guid-
ance for future implementation of the MSA method in more
challenging scenarios.
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APPENDIX A

The Two-Dimensional Vortex Model

The model state can be defined by a nondivergent hori-
zontal wind field, (u, y), on a square domain with periodic
boundary conditions and no rotation. The model can be
nondimensionalized and applied to vortex systems at differ-
ent scales, but in this study we formulated the model with
physical units commonly found in hurricane prediction to
provide some context. The model grid uses Cartesian coor-
dinates r 5 (x, y) with length L in each direction, it has
128 3 128 grid points and the grid spacing is set to Dx 5 9 km.
The governing equation is

­z

­t
52v ? =z 1 gz 1 n=2z, (A1)

where z 5 ­y /­x 2 ­u/­y is the vorticity, g is the generation
rate, and n is a dissipation coefficient.

The equation is solved in spectral space using the fourth-
order Runge–Kutta numerical scheme with a time step of
60 s. Let k 5 (kx, ky) denote the wavenumber in (x, y) di-
rections that form the spectral space, k 5 |k| is the total

wavenumber. The generation rate is spatially varying and
defined in spectral space as

ĝ(k) 5 j exp 2
(k 2 kg)2

2s2
k

[ ]
if max(V) , Vc

0 if max(V) $ Vc

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (A2)

where ĝ is the Fourier coefficients of g, j is a scalar genera-
tion coefficient, Vc is the critical wind speed that limits the
generation, kg is the center wavenumber and sk is the spec-
tral bandwidth of the generation rate. The generation rate
has a Gaussian spectral shape so that generation occurs
mostly at wavenumbers kg 6 sk.

The wind field consists of a Rankine vortex embedded in a
background flow that both evolve with time. The initial Ran-
kine vortex is created so that its center position is rc 5 (xc, yc)
and its radial wind profile follows:

Vvort(R) 5
Vmax

R
Rmw

if R # Rmw

Vmax

Rmw

R

( )a
if R . Rmw

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A3)

where Vvort 5 |vvort|, R 5 |r 2 rc| is the radius relative to the
center, Vmax is the vortex maximum wind speed, Rmw is the
radius of maximum wind, and a is a shape parameter.

The background flow is initialized at t 5 0 as a random
wind field with a spectrum V̂bkg(k) ~ k23 and wind speed
Vbkg 5 |vbkg|. The average wind speed Vbkg (the bar de-
notes a spatial average) can be specified to control the rel-
ative strength of the initial background flow, for example
Vbkg 5 0 turns off the background flow. To generate the
random wind field, we first draw a random vorticity field
ẑbkg(k) ~ k21, convert the vorticity to wind so that the wind
is nondivergent and has the correct 23 power law, and then
normalize and scale the wind speed to Vbkg.

APPENDIX B

The Scale Decomposition Method

Let Ns be the number of SCs. Given L 5 128Dx, the largest
meaningful wavenumber is kmax 5 16 in this study (8Dx re-
solves a complete sine wave). The characteristic wavenumber
for each SC can be defined as ks 5 k

s/Ns
max , for s 5 1, … , Ns.

For the sth SC, a spectral lowpass response function is de-
fined as

f̂
L
s (k) 5

1 if |k| , ks

cos
|k| 2 ks
ks11 2 ks

( )[ ]2
if ks # |k| # ks11

0 if |k| . ks11

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(B1)

and a bandpass response function is then constructed by

f̂ s 5

f̂
L
s if s 5 1

f̂
L
s 2 f̂

L
s21 if 1 , s , Ns

1 2 f̂
L
s21 if s 5 Ns

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (B2)
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In vector form, the spectral-space response function is
f̂s 5 f̂ s(k), corresponding to fs 5 fs(r) in physical space.
Since model states are defined on a uniform grid, it is easy
to transform the states to spectral space, apply the re-
sponse function in an element-wise product ĉs 5 f̂s+ ĉ,
then transform back to get the sth state SC cs.

Observation SCs are more difficult to derive because of the
irregular grid. According to the convolution theorem, an ele-
ment-wise product f̂s+ ĉ in spectral space is equivalent to a
convolution fs ∗c in physical space. In this study, the convolu-
tion is done through a series of spatially weighted averages.
The sth observation SC can be obtained by fo

s 5 fs ∗fo,
whose ith element is

fo
s,i 5 ∑

No

j51
fs(ri 2 rj)fo

j , (B3)

where ri is the position of fo
i . The low-pass filter can also be

implemented more efficiently using a diffusion-based algorithm
(e.g., Grooms et al. 2021) for the irregular grids. Following
Buehner and Shlyaeva (2015), we allow some spectral overlap-
ping between SCs by using a squared cosine transitioning from
1 to 0 in the response functions. This overlapping makes the SC
computation more numerically stable, it also allows stronger er-
ror correlation among SCs which is more suitable for the MSA.

Hereafter we express the scale decomposition operation in
matrix form as cn,s 5 Fscn for the model states, fo

s 5 Fo
sf

o

for the observations, and fb
n,s 5 Fo

s h(cb
n) for the observation

priors. Each row of Fs contains the averaging kernel fs, and
Fo
s only differs from Fs due to different geometry of the

model grid and the observing network.
Spatial inhomogeneity in the observation grid will result in in-

accuracies in the derived SCs. One can pad the data voids with
fake observations (zeros; will not be assimilated) to achieve a
relatively even distribution. Of course, the same padding needs
to be applied to the observation priors (simulated observations
from model states) to derive a consistent innovation.

We use a reduced-dimension grid to represent large-scale
SCs, which improves the efficiency of the multiscale ap-
proaches. The necessary grid dimension decreases with ks.
The EnKF update is performed on the coarse grid and in-
crements are then refined (with bilinear interpolation) and
added to the native model grid, which is a common ap-
proach for multiscale/multigrid DA and in incremental
4DVar (Courtier et al. 1994).

APPENDIX C

The Multiscale Alignment (MSA) Method

The EnKF update equation [Eqs. (13) and (14) in Burgers
et al. (1998)] can be restated as

ca
n 5 cb

n 1 L+
cov(cb, fb)

cov(fb, fb) 1 R
(fo 2 fb

n), (C1)

for n 5 1, … , N, where cb
n is the prior state, fo is the obser-

vation, fb
n 5 h(cb

n) is the observation prior, ensemble-estimated

error covariances (cov) are computed according to (7), R is the
specified observation error covariance, and L is the localization
to remove spurious error covariances. The localization factor for
assimilating the ith observation and updating the jth state vari-
able is

Li,j 5 a 3 GC(|ri 2 rj|, ROI), (C2)

where GC is the Gaspari and Cohn (1999) localization func-
tion with a parameter called radius of influence (ROI; the
distance at which the covariance is tapered to zero), a is an
additional amplitude parameter (similar to the one used in
Lei and Whitaker 2017).
Algorithm 1 The MSA (if decompose_obs 5 False) and
MSA-O (if decompose_obs 5 True) methods. Note that sub-
script n implies that the operation is repeated for n 5 1, … , N.
Input: prior ensemble cn, observations f

o

Output: iteratively updated cn as final analysis ensemble
Parameters: number of scales Ns, localization function
Ls(ROIs, as), observation error s2

o,s, and smoothness con-
straint w

1: for s in 1, … , Ns do
2: cb

n,s 5 Fscn
3: fb

n 5 h(cn)
4: if decompose_obs then
5: fo

s 5 Fo
sf

o

6: fb
n,s 5 Fo

s h(cn)
7: ca

n,s 5 cb
n,s 1 Ls+

cov(cb
s , f

b
s )

cov(fb
s , f

b
s )1 s2

o,sI
(fo

s 2fb
n,s)

8: else

9: ca
n,s 5 cb

n,s 1 Ls+
cov(cb

s , f
b)

cov(fb, fb)1 s2
oI
(fo 2fb

n)
10: end if
11: if s , Ns then
12: qn,s 5 argminq ‖c

b
n,s(q)2 ca

n,s‖
2 1 w‖=q‖2

13: cn $ cn(qn,s)1 ca
n,s 2 cb

n,s(qn,s)
14: else
15: cn $ cn 1 ca

n,s 2 cb
n,s

16: end if
17: end for

The MSA method (Ying 2019) applies the EnKF update
(C1) sequentially for the SCs. Algorithm 1 provides a pseu-
docode description. Note that each EnKF update makes an
“analysis increment” ca

n,s 2 cb
n,s, while all the iterations lead

to the “final analysis” cn.
We keep a general form of an EnKF update in the algo-

rithm, indicating that different EnKF variants can be used.
In this study, we choose to use the ensemble square root fil-
ter variant (EnSRF; Whitaker and Hamill 2002; Tippett
et al. 2003), which assimilates observations one at a time as-
suming their errors to be uncorrelated R5 s2

oI. We only
consider the scenario when so is specified correctly during
DA, and performed some manual tuning to optimize the lo-
calization parameters.

After obtaining the analysis increment, displacement vectors
q are derived by minimizing the cost function ‖cb(q)2 ca‖2 1
w‖=q‖2 using the Horn and Schunck (1981) optical flow
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algorithm. The term c(q) is a shorthand to represent the
warped model states, u(r 1 q) and y(r 1 q). Note that q is
a spatially varying vector field, unlike the constant position
perturbations r′n in (3). The smoothness constraint is set to
w 5 1 [not tuned, see Horn and Schunck (1981) for a dis-
cussion of its effect]. The displacement vectors are then
applied to warp the model state to reduce position errors
at smaller scales, the warping is done through bilinear in-
terpolation to evaluate c(q).

We proposed and tested a new option to decompose ob-
servations into SCs corresponding to the state SCs, which
we call MSA-O (decompose_obs 5 True in Algorithm 1).
This option allows observations to be closer to the model
states (less scale mismatch) during assimilation, improving
the filter performance. Note that, for the MSA-O, the ob-
servation errors also undergo scale decomposition (B3) so
that the observation error standard deviation for fo

s is ad-
justed to

so,s 5 sofs(0), (C3)

i.e., large-scale observation error is reduced.
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