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ABSTRACT

The serial ensemble square root filter (EnSRF) typically assumes observation errors to be uncorrelated

when assimilating the observations one at a time. This assumption causes the filter solution to be suboptimal

when the observation errors are spatially correlated. Using the Lorenz-96 model, this study evaluates the

suboptimality due to mischaracterization of observation error spatial correlations. Neglecting spatial corre-

lations in observation errors results in mismatches between the specified and true observation error variances

in spectral space, which cannot be resolved by inflating the overall observation error variance. As a remedy, a

multiscale observation (MSO) method is proposed to decompose the observations into multiple scale com-

ponents and assimilate each component with separately adjusted spectral error variance. Experimental results

using the Lorenz-96 model show that the serial EnSRF, with the help from the MSO method, can produce

solutions that approach the solution from the EnSRFwith correctly specified observation error correlations as

the number of scale components increases. TheMSOmethod is further tested in a two-layer quasigeostrophic

(QG) model framework. In this case, the MSO method is combined with the multiscale localization (MSL)

method to allow the use of different localization radii when updating the model state at different scales. The

combined method (MSOL) improves the serial EnSRF performance when assimilating observations with

spatially correlated errors. With adjusted observation error spectral variances and localization radii, the

combined MSOL method provides the best solution in terms of analysis accuracy and filter consistency.

Prospects and challenges are also discussed for the implementation of the MSO method for more complex

models and observing networks.

1. Introduction

Data assimilation (DA) combines the information

from observations and model forecasts according to

their relative uncertainties to obtain an improved esti-

mate of the model state. The ensemble Kalman filter

(EnKF; Evensen 1994; Burgers et al. 1998) is a popular

ensemble filter formulation where prior and observation

errors are assumed to follow Gaussian distributions.

Serial EnKF formulations (Anderson 2003; Tippett et al.

2003), where observation errors are assumed uncorre-

lated and observations are assimilated one at a time,

have good computational scaling and have been suc-

cessfully implemented in operational prediction systems

(e.g., Whitaker et al. 2008). Despite its popularity, the

serial EnKF is known to have suboptimal performance

when the observation errors are correlated, since the

uncorrelated observation error assumption will cause an

overfit to the observations.

In this paper, observation errors are considered as

including both instrument noises and errors of repre-

sentativeness, or ‘‘representation errors’’ (van Leeuwen

2015; Hodyss and Satterfield 2017; Janjic et al. 2018).

Representation errors can be caused by errors in the

forward operator that maps model state to correspond-

ing observations, scale mismatches between observa-

tions and model states, as well as errors introduced

during preprocessing of observations. Scale mismatches

between observations and model states often give rise to

spatial correlations in representation errors (Stewart

2010; Weston et al. 2014; Waller et al. 2014). Due to

these spatial correlations, observations obtained from

Doppler radar (Waller et al. 2016), satellite radiances

(Bormann and Bauer 2010; Geer et al. 2017; Migliorini

and Candy 2019), and many others cannot be fully uti-

lized in DA. To avoid overfitting to observations with

correlated errors, it is common practice to inflate the

observation error variances during DA (Courtier et al.

1998; Collard 2004; Hilton et al. 2009; Bormann et al.

2016). However, Miyoshi et al. (2013) pointed out thatCorresponding author: Dr. Yue Ying, mying@ucar.edu
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inflating observation error variances to try to compen-

sate for correlated observation errors is suboptimal.

Other observation subsampling methods such as thin-

ning (Liu and Rabier 2002, 2003; Dando et al. 2007)

and the creation of superobservation, also known as

‘‘superobbing’’ (Berger and Forsythe 2004; Zhang et al.

2009), have been proposed to reduce spatial correla-

tions in observation errors. Hoffman (2018) recently

investigated the impact of observation thinning or

smoothing on analysis accuracy in a simple one-

dimensional setting. Although subsampling the obser-

vations will prevent overfitting, doing so will discard

small-scale observation information and degrade the

overall DA performance.

For high-resolution prediction systems, the need for

retaining small-scale information calls for DA methods

that can incorporate the observational information at all

ranges of scales. Recent studies have investigated DA

methods that can account for observation error corre-

lations in simplified (Stewart et al. 2008, 2013; Rainwater

et al. 2015; Ruggiero et al. 2016) or realistic scenarios

(Bormann and Bauer 2010; Weston et al. 2014; Waller

et al. 2016; Bormann et al. 2016; Campbell et al. 2017;

Simonin et al. 2019). TheseDAmethods, althoughmore

computationally expensive, allow more observation in-

formation to be incorporated and thus improves pre-

diction skill. A common approach for ensemble filtering

to assimilate observations with correlated errors is to

perform a transform of the observations to a space

where their errors are no longer correlated (rotating the

observation error covariance matrix) and perform DA

in that space (e.g., Anderson 2001). For example, if the

observation error correlation length is constant in space,

the observations can be transformed to spectral space

(e.g., Fourier transform) where their errors become

uncorrelated. However, reducing sampling noises in

spectral space is more difficult, since a distance-based

correlation function in physical space will transform to a

nonlocal function in spectral space.

Spatial correlations in observation errors change the

distribution of error variances in spectral space, effec-

tively changing the relative precision of observation

information at different scales (Miyoshi et al. 2013;

Rainwater et al. 2015; Fowler et al. 2018). Observation

errors with spatial correlation are essentially a red noise

with more error variances concentrated at larger scales.

Recent ideas of using spatial differences of neighboring

observations to extract small-scale information and im-

prove DA performance (Anderson 2016; Bedard and

Buehner 2020) inspired a new multiscale approach de-

scribed in this paper. The new approach decomposes the

observations into several scale components and assimi-

lates them sequentially using a serial EnKF. During

assimilation of an observation scale component, its

corresponding error variance is adjusted individually to

account for the effect of spatial correlations.

This paper is organized as follows. Section 2 de-

scribes the DA framework used in this study for testing

the multiscale approach. Section 3 uses the Lorenz

(1996) model to demonstrate the suboptimality due to

mischaracterizing observation error correlations and

provides a proof of concept of how the multiscale ap-

proach reduces such suboptimality. Section 4 further

evaluates the multiscale approach using a two-layer

quasigeostrophic model. Section 5 discusses further

implementation of the multiscale approach in real

prediction systems and section 6 summarizes the find-

ings of this study.

2. Methodology

a. The ensemble square root filters

Ensemble filtering is a sequential DA approach that

propagates the model state in time and assimilates ob-

servations as they become available to update the state.

An ensemble of model state realizations is used to

provide a flow-dependent representation of its uncer-

tainties. An analysis cycle consists of an filter update step

where the prior ensemble from model forecasts is fused

with observations to form the posterior ensemble (also

known as the analyses) and a forecast step where the

posterior ensemble is propagated forward in time to pro-

vide priors for the next cycle. This study focuses on a par-

ticular variant of ensemble filters known as the ensemble

square root filter (EnSRF), which is described as follows.

Let x denote a random vector of sizeNx containing the

model state variables. Let N be the ensemble size and

subscript n indexes ensemble members. Superscripts b

and a denote the prior and posterior state, respectively.

The nth prior ensemble member can be written as

xbn 5 xb 1 x0bn , where

xb 5
1

N
�
N

n51

xbn (1)

is the ensemble mean and x0bn is the nth ensemble per-

turbation. Let yo be a vector of size Ny that contains the

observations. H is a forward operator that maps a prior

model state to its corresponding observation priors:

ybn 5H(xbn) . (2)

The observation priors can also be written in terms of

the sum of mean and perturbations, ybn 5 yb 1 y0bn . The
ensemble filter derives the posterior states by weighting

the prior states and the observations according to their
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relative uncertainties. The prior state and observation

errors are both assumed to followGaussian distributions

with zero mean (unbiased) and error covariances B and

R, respectively. The prior ensemble xbn provides a sample

estimate of B, while R is typically specified.

A shorthand notation for sample-estimated error co-

variance between two vectors a and b is defined as

cov(a, b)5
1

N2 1
�
N

n51

a0n(b
0
n)

T
, (3)

where n indexes the ensemble member and the prime

indicate ensemble perturbations. For the sake of sim-

plicity, the covariance between a vector a and itself is

denoted as cov(a). Note the notation also holds for

scalars [e.g., cov(a, c) is the error covariance between a

vector a and scalar c]. The covariance between a scalar c

and itself is just its variance, and therefore denoted

as var(c).

The EnSRF (Whitaker and Hamill 2002) update

equations can be written as

xa 5 xb 1 cov(xb, yb)[cov(yb)1R]21(yo 2 yb) , (4)

and

x0an 5 x0bn 2 cov(xb, yb)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov(yb)1R

p� �21� �T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov(yb)

ph
1

ffiffiffiffi
R

p i21
y0bn , (5)

where xan 5 xa 1 x0an is the nth posterior member. The

EnSRF is a deterministic ensemble filter formulation

(e.g., Bishop et al. 2001; Anderson 2001) that does not

require perturbing the observations and therefore avoids

introducing additional sampling noise.

For observations with uncorrelated errors (R is diag-

onal), the observations can be assimilated serially, which

is known as the ‘‘serial EnSRF’’ (Whitaker and Hamill

2002; Tippett et al. 2003). Let

z
n
5 [x

n
, H(x

n
)]5 [x

n
, y

n
] (6)

be a state vector in a joint state–observation space

(Anderson 2003) for the nth ensemble member. The

serial EnSRF assimilates one observation at a time to

iteratively update the joint space state vectors. Let yoj be

the jth observation and s2
o,j be its error variance (jth

diagonal term of R). Superscript ( j) indicates the up-

dated values after assimilating the previous j 2 1 ob-

servations. Starting from the prior state z(1)n 5 zbn. The

update equations for the jth observation are

z( j11) 5 z( j) 1K
j
[yoj 2 y

( j)
j ] , (7)

and

z0
( j11)
n 5 z0

( j)
n 2 fK

j
y0

( j)
j,n , (8)

where

K
j
5

cov[z( j), y
( j)
j ]

var[y
( j)
j ]1s2

o,j

(9)

is the Kalman gain associated with the jth observa-

tion, and

f5 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
o,j

var[y
( j)
j ]1s2

o,j

vuut
0
@

1
A
21

(10)

is a square root modification factor. When all Ny ob-

servations are assimilated, xan 5 x(Ny11) 1 x0(Ny11)
n gives

the nth posterior ensemble member. A full Rmatrix can

be specified in the EnSRF to account for error correla-

tions. Section 3a will use numerical experiments to show

how the serial EnSRF solution deviates from the EnSRF

solution due to mischaracterization of R.

b. Spatially correlated observation errors

This study only considers spatially uniform observing

networks. A simple first-order autoregressive process is se-

lected as observation errormodel. TheRmatrix is definedas

R
ij
5s2 exp(2D

ij
/L) , (11)

where s2 is the error variance, Dij is the distance be-

tween the ith and jth observations, and L is the corre-

lation length scale. Both s and L are considered to be

constant in space and time. Figure 1a shows the spatial

correlation function when L 5 0, 1, 2, 5, and 10 grid

points on a one-dimensional domain. L 5 0 is the case

when observation errors are uncorrelated. The Rmatrix

can be diagonalized as

R5ULoUT , (12)

where Lo contains the eigenvalues (error spectrum)

along the diagonal and U contains the discrete Fourier

bases as eigenvectors;Lo
k, the kth diagonal term inLo, is

the spectral error variance associated with wavenumber

k 5 0, 1, . . . , Ny/2. The (j, k)th element of U is given by

U
jk
5

ffiffiffiffiffiffi
2

N
y

s
exp

 
2pi

kj

N
y

!
, (13)

where i5
ffiffiffiffiffiffiffi
21

p
. Figure 1b shows the error spectra for

s 5 1 and L varying from 0 to 10. The uncorrelated
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errors (L 5 0) have an even distribution of spectral

variances. As L increases, more spectral error variances

are distributed in the large scales (small k). When the

true observation errors are spatially correlated, as-

suming uncorrelated observation errors (in the serial

EnSRF) is effectively overspecifying observation error

variances at small scales and underspecifying them at

large scales.

Note that the exact choice of observation error cor-

relation functions is not important for reasons that will

become clear later as the multiscale approach is intro-

duced in section 2d. Decomposing the observations into

scale components will allow adjustment of spectral error

variances to adapt to any arbitrary correlation functions.

What is more challenging is the spatially and temporally

varying s and L in real observations, which will be dis-

cussed in detail in section 5.

c. Metrics for evaluating filter performance

Let us now define several quantities to measure filter

performance. The true model state from a nature run is

denoted as x*. Synthetic observations are generated as

yo 5H(x*)1 eo, where random noises eo are drawn from

the true observation error distribution N(0, R*) with

the true error statistics s* andL*. The observation error

covariance specified a priori in the EnSRF is denoted as

R with parameters s and L. The true and specified ob-

servation error spectra are denoted as Lo* and Lo, re-

spectively, according to (12). The error of the prior

ensemble mean compared to the truth, eb 5 xb 2 x*,

measures the actual accuracy of the prior model state,

while the prior ensemble spread represents the uncertainty

‘‘specified’’ in the EnSRF which reflects the filter’s

knowledge of the uncertainty in state estimate. The

spectrum of the actual prior error, Lb*, can be calcu-

lated as

E(ebebT)5 ~ULb*~UT , (14)

where E denotes the expected value that is evaluated by

averaging ebebT over many analysis cycles, ~U is similar to

U in (13) but replacingNywithNx. The spectrum of prior

ensemble spread, Lb, can be calculated as

E[cov(xb)]5 ~ULb ~UT . (15)

Ideally, the ensemble spread should match the actual

error standard deviation for each wavenumber, so that

the specified uncertainties match the truth and correct

weights are assigned to the observations and prior states.

A consistency ratio (CR) is defined as the ratio between

Lb and Lb* to evaluate this match. When CR , 1,

the ensemble spread underestimates the actual uncer-

tainties inmodel states (the ensemble is underdispersive),

and observations are not given enough weights to ad-

just the state estimates. In extreme cases, the obser-

vations can be completely ignored when the ensemble

spread collapses, a phenomenon known as ‘‘filter di-

vergence’’. Note that the same metrics can be calcu-

lated for the posterior error and ensemble spread, La*

and La. The overall error and spread can be measured

by summing over all wavenumbers. For example, the

square root of the trace of La* and La gives the over-

all posterior RMSE and posterior ensemble spread,

respectively.

FIG. 1. (a) Spatial autocorrelation function and (b) its corresponding spectrum of a one-dimensional error field with

40 grid points. Varying correlation length scales L 5 0, 1, 2, 5, and 10 grid points are shown in different colors.
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Covariance localization (Houtekamer and Mitchell

2001; Hamill et al. 2001) and inflation (Anderson and

Anderson 1999) are also implemented to counter the

deficiencies in ensemble filter and improve its perfor-

mance. Localization reduces the sampling noises due to

the use of a limited-size ensemble. The Gaspari and

Cohn (1999) localization function is used in this study

with radius of influence (ROI) defined as the distance at

which ensemble estimated covariance is tapered to zero.

A multiplicative inflation factor l is applied to the prior

ensemble perturbations before the filter update to main-

tain filter consistency in the presence of model errors or

other unaccounted for error sources.

d. A multiscale ensemble filtering approach

This section introduces a multiscale ensemble filtering

approach comprising two methods: multiscale observa-

tion (MSO) and multiscale localization (MSL). The

MSO method decomposes the observations into several

scale components and the filter update is calculated se-

quentially for each component to update the model

state. The uniform observing network considered in

this study allows scale decomposition to be performed

by fast Fourier transforms. The sth observation scale

component can be found by

yos 5U[f
s
+(UTyo)] , (16)

where U contains the Fourier bases from (13), fs is a

scale-selective response function for the sth scale

component, and + denotes the element-wise product.

Approaches for extracting scale component from

nonuniform observing networks will be discussed in

section 5. The number of scale components Ns and the

response functions are predefined in this study. TheMSO

method starts from the prior ensemble x(1)n 5 xbn and ob-

servation priors y(1)n 5 ybn (subscript n indexes ensemble

member), and performs the following steps for s5 1, . . . ,Ns

to iteratively update the states and observation priors.

1) Use (16) to compute the sth scale component of the

observations and observation priors, yos and y(s)n,s.

2) Use x(s)n as prior ensemble, yos as observation, and y(s)n,s

as observation priors; use (lo
ss)

2 as observation error

variance, where lo
s is an adjustment factor for the

spectral observation error varainces. Apply the serial

EnSRF update equations in (7)–(10) and set x(s11)
n as

the updated ensemble and y(s11)
n as the updated

observation priors.

3) If s,Ns, let s5 s1 1 and go to step 1, otherwise the

final posterior ensemble is xan 5 x(Ns11)
n .

In this study, the optimal spectral observation error

variance adjustment factors are found by lo
s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lo

s
*/Lo

s

q
,

whereLs is the averaged spectral variances for the sth scale

component. Section 5 will discuss how to estimate lo
s when

the truth (Lo
s
*) is unknown, and how to account for spa-

tially and temporally varying observation error statistics.

Multiscale localization methods have been suggested

in the literature to improve DA performance for high-

dimensional problems (e.g., Zhang et al. 2009; Miyoshi

and Kondo 2013; Buehner and Shlyaeva 2015). The

MSL method is implemented in this study by decom-

posing the model state into several scale components

and applying a separate localization ROI when updating

each component. Themodel state is decomposed intoNt

scale components xt 5 ~U[~f t+(~UTx)], where t indexes the

scale components. Let xbn,t denote the tth scale compo-

nent of the nth prior ensemble member. Starting from

the prior states x(1)n 5 xbn, the following steps are applied

for t 5 1, . . . , Nt to update the states.

1) The observation priors corresponding to the inter-

mediate updated ensemble states are computed

as y(t)n 5H[x(t)n ].

2) Use xbn,t as prior ensemble, yo as observations, and

y(t)n as observation priors; use ROIt as localization

radius and s2 as observation error variance; apply

the serial EnSRF update step described in (7)–

(10), and the resulting analysis increments are dxn.

Add these increments to update the ensemble

as x(t11)
n 5 x(t)n 1 dxn.

3) If t , Nt, let t 5 t 1 1 and go to step 1, otherwise the

final posterior ensemble is xan 5 x(Nt11)
n .

The MSL method can be combined with the MSO

method for applications involving both multiple corre-

lation length scales and spatially correlated observation

errors. The combined method will be referred to as

MSOL, which will go through each pair of sth observa-

tion component and tth state component, and compute

serial EnSRF analysis increments to iteratively update

the ensemble states to reach the final posterior. Note

that themultiscale approach can also be applied to other

variants of ensemble filters.

3. Lorenz-96 model experiments

In this section, the Lorenz (1996) model is employed

as the test model to demonstrate the suboptimality

due to mischaracterized observation error statistics in

EnSRF and evaluate the MSO method. The governing

equations for the Lorenz-96 model state x are

dx
i

dt
5 (x

i11
2 x

i22
)x

i21
2 x

i
1F , (17)

i 5 1, 2, . . . , Nx, where Nx 5 40, and F is a forcing pa-

rameter. The true model forcing parameter is set to
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F* 5 8, for which chaotic behavior occurs. Cycling DA

experiments are conducted over 100 000 cycles with a

cycling period of 0.2 time units, and performance met-

rics (RMSE and CR) are averaged over these cycles.

The identity matrix is used as forward operator (i.e.,

observations are the same as state variables, ybn 5 xbn, and

all state variables are observed). The true observation

error statistics are set to s* 5 1 and L* 5 5.

a. Impact from mischaracterization of observation
error correlation

This section evaluates the suboptimality in DA per-

formance due tomis-specifiedL. InDApractice, several

sources of suboptimality may exist simultaneously, in-

cluding mis-specified observation error statistics, model

errors, sampling errors due to limited ensemble size, and

the deviation from linear and Gaussian approximation

due to nonlinear model dynamics and forward opera-

tors. Here, the impact of changingL will be evaluated in

several scenarios with or without sampling errors (small

N) and model parameter errors (wrong F). In each

scenario, the localization ROI and prior inflation factor

l are manually tuned by trying ROI 5 5, 10, 15, . . . , 60

grid points, and l 5 1, 1.02, 1.04, . . . , 1.2 (or up to 1.5 if

model errors exist) to find the best solution. These dif-

ferent scenarios provide a more comprehensive evalu-

ation of the suboptimality due to mis-specified L.

A benchmark case is chosen with correctly specified

s 5 1 and L 5 5, the perfect model (F 5 8), and en-

semble size ofN5 40. Note that the benchmark solution

is still suboptimal because the EnSRF makes linear and

Gaussian assumptions and the Lorenz-96 model has

nonlinear dynamics. Nonetheless, it is still considered

the benchmark case since this study only focuses on

mischaracterized observation error statistics. Also note

that using very large ensemble sizes in this case does

not further improve performance due to the nonlinear

model dynamics (Anderson 2010). For the benchmark

case, the best ROI 5 60 grid points and l 5 1.04. With

correctly specified parameters, only a little localization

and inflation is needed, almost all prior error covari-

ances are retained with those at greater distances given

less weight.

To understand the impact from mis-specified L, a set

of experiments are performed with L that deviates from

the benchmark case. The changes in DA performance

are evaluated by investigating the error spectra aver-

aged over all analysis cycles. Figure 2 shows the spectra

of true observation error (Lo*), specified observation

error (Lo), prior error (Lb*) and ensemble spread (Lb),

and posterior error (La*) and ensemble spread (La) for

L 5 0, 0.5, 1, 3, 5 (benchmark), and 8. The benchmark

case (Fig. 2a) has minimum spectral error variances and

CR close to 1 for all wavenumbers. When L.L*

(Fig. 2b), observation error spectral variances are un-

derspecified at smaller scales compared to the truth,

resulting in underdispersive posterior ensemble. Note

that observation error spectral variance at k 5 0 is ac-

tually overspecified (not shown on plot) and the overall

observation error variance is still matching with the true

since s5s*. But this overspecification only happens at

the largest scale and the posterior solution seems to be

dominated by the underspecification at small scales. On

the other hand, when L , L* (Fig. 2c), the observation

error spectral variances are overspecified at smaller

scales, causing an overdispersive posterior ensemble.

For the L5 3 and L5 8 cases, the mismatches between

true and specified observation error spectral variances

are not large and do not considerably increase the pos-

terior error variances. As L deviates more from L*

(Figs. 2d–f), the posterior error variances become much

larger than the benchmark case. While posterior error

variances keep increasing as L decreases to 0, the pos-

terior ensemble consistency seems to be worst forL5 1.

For L5 0 (Fig. 2f), CR is close to 1 again for most of the

spectrum except for wavenumbers 0–2. In this case,

observation error spectral variances are underspecified

at large scales and overspecified at small scales, and the

effects on ensemble spread from such under and over-

specification seem to cancel out. However, since ob-

servation error spectral variances are not correctly

specified during assimilation, the posterior error vari-

ances do increase. The solution from L5 0 is similar to

the case of running the serial EnSRF where observa-

tion error correlations are not accounted for. The so-

lutions from the serial EnSRF and the EnSRF withL5
0 differ only due to their different ways of applying

localization.

In practice, the specified s is often inflated during

DA to compensate for correlated observation errors

(Courtier et al. 1998; Bormann et al. 2016). Another set

of experiments are performed by deviating both s andL

from the benchmark case to see if adjusting s can help

compensate the misspecification of L. Figure 3 plots the

overall posterior RMSE and CR (averaged over all

scales) as a function of s ranging from 0.4 to 1.6 and L

ranging from 0 to 10 grid points. The ‘‘1’’ sign marks the

benchmark case which has the lowest RMSE and CR

close to 1. Results show that small deviations from L*

(L 5 3–10) can be well compensated by adjusting s.

For example, s 5 1.2 for L 5 7 and s 5 0.8 for L5 3

both yield DA performance that is comparable to the

benchmark. However, asL deviates more from the truth

(L, 2), adjustings becomesno longer effective andoverall

posterior RMSE increases. As seen from Figs. 2d–f,

the shape of the specified observation error spectrum
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differs too much from the truth and cannot be matched

by simply adjusting the overall error level. For L , L*,

inflating s can better match its large-scale error vari-

ances, but at a price of sacrificing the small-scale com-

ponents where the mismatch gets even worse. Similarly,

trying to match small-scale error variances will sacrifice

the large-scale components.

The best DA performance for each specified L is

found by manually tuning s, ROI, and l, and results are

summarized in the first section of Table 1. The benchmark

FIG. 2. Error spectrum averaged over the first 5000 analysis cycles for the cases using EnSRF withN5 40, F5 8,

ROI5 60, l5 1.04, s5 1, and (a)–(f) L5 5, 8, 3, 1, 0.5, and 0. Each panel shows the true observation error (Lo*),

specified observation error (Lo), prior error (Lb*) and spread (Lb), and posterior error (La*) and spread (La). The

spectrum plotted here corresponds to the square root of the diagonals ofLmatrices. The posterior error spectrum

of the benchmark case (L5L*) is shown as black dotted lines on each panel for reference.
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case does not require too much localization and inflation

because of the near-optimal ensemble size and the perfect

model. As a result, cases with L 5 3–10 have low RMSE

andCR close to 1 becauseL only deviates slightly from the

truth (L5 5). Note that the shape of the observation error

spectrum does not change linearly with L, therefore dou-

bling L from 5 to 10 does not result in big mismatches in

error spectra. The suboptimality becomes clear asL drops

below 2, where the posterior RMSE increases consider-

ably. The same experiments are repeated for two other

scenarios: more sampling errors (N 5 20, F 5 8), and

imperfect model (N5 40, F5 7.5), whose results are also

summarized in Table 1. In these scenarios, extra sources of

suboptimality are introduced to the system, causing DA

performance to degrade. The manually tuned ROI and

l counter these suboptimality as much as possible (larger

inflation factor and tighter localization distances are used).

In these scenarios, the suboptimality due tomis-specifiedL

still appear in a similar fashion as in the first scenario, in-

dicating that the behavior described above is robust.

b. Test of multiscale observation approach

In this section the MSO method is tested with the

serial EnSRF using the Lorenz-96 model. Since the

model does not feature multiscale dynamics (errors

grow and instantaneously project to all wavenumbers),

multiscale localization is not applied. The wavenumber

space is evenly divided into Ns bands for each scale

component, and the cases using Ns 5 1, 2, 3, 4, 5, and 7

are tested. Note that Ns 5 1 is the original single-scale

serial EnSRF. Figure 4 shows the spectra of prior and

posterior error and ensemble spread for cases with in-

creasing Ns. Note that results from Ns 5 4 and 5 do not

visually differ much from Ns 5 7, thus not shown. For

Ns 5 2, the observations are decomposed into two scale

components, the larger-scale observation errors are in-

flated to s’ 1.3 and the smaller-scale errors are deflated

to s ’ 0.4. Results suggest that separating observations

into just two scale components already reduces most

of the suboptimality due to mis-specified L. As Ns

FIG. 3. (a) RMSE and (b) CR of the posterior ensemble averaged over the first 5000 analysis cycles plotted as a

function of specified observation error standard deviation s and correlation length scaleL. The cases using EnSRF

withN5 40 and F5 8 are shown. The plus sign indicates the true values, s*5 1 andL*5 5, used in the benchmark

case. The L values are plotted in log scale.

TABLE 1. Best performance using the EnSRF found for the

Lorenz-96 model experiments under three scenarios: benchmark

(N5 40,F5 8), more sampling errors (N5 20,F5 8), and imperfect

model (N 5 40, F 5 7.5). For each scenario, the specified L ranging

from 0 to 10 grid points are tested. For each case, the posteriorRMSE

and CR are shown along with the manually tuned observation error

standard deviation s, localization ROI, and prior inflation factor l.

Scenarios RMSE CR s ROI l

N 5 40, F 5 8:

L 5 0 0.360 1.07 1 50 1.06

L 5 1 0.197 1.03 0.6 55 1.08

L 5 3 0.159 1.02 0.8 55 1.04

L 5 5 (benchmark) 0.158 1.01 1 55 1.04

L 5 7 0.158 1.02 1.2 60 1.04

L 5 10 0.159 0.99 1.4 60 1.04

N 5 20, F 5 8:

L 5 0 0.370 1.09 1 35 1.12

L 5 1 0.208 1.02 0.6 40 1.14

L 5 3 0.164 1.04 0.8 40 1.08

L 5 5 0.162 0.99 1 40 1.06

L 5 7 0.161 1.01 1.2 40 1.06

L 5 10 0.162 0.98 1.4 40 1.06

N 5 40, F 5 7.5:

L 5 0 0.448 1.05 1 40 1.20

L 5 1 0.320 0.92 0.6 45 1.40

L 5 3 0.280 0.94 0.8 45 1.40

L 5 5 0.280 0.92 1 45 1.40

L 5 7 0.280 0.94 1.2 45 1.40

L 5 10 0.281 0.91 1.4 45 1.40
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increases, the filter solution approaches the benchmark

EnSRF solution with correctly specified L. More quan-

titatively, the overall posterior RMSE and CR are

summarized in the first section of Table 2. The MSO

method is also tested in the other two scenarios with

additional suboptimalities, and results are also summa-

rized in Table 2. As Ns increases, the overall posterior

RMSE also decreases for these scenarios despite the fact

that performance is worse than the first scenario due to

additional error sources. One exception is for the second

scenario with more sampling errors, where the im-

provement in performance stops atNs5 5 and posterior

RMSE increases back up for Ns 5 7. The accumulation

of sampling noises may be the culprit here. When

the serial EnSRF assimilates the sth observation scale

component, error covariances between the observation

at scale s and themodel state need to be estimated by the

ensemble. Such cross-scale error covariance is inevitably

contaminated with sampling noises not fully removed

by a distance-based localization function. This may also

explain why the Ns 5 7 case still have larger posterior

RMSE compared to the benchmark EnSRF case, since

no cross-scale covariance is needed in the EnSRF.

4. Two-layer quasigeostrophic model experiments

The multiscale approach is further tested in a higher-

dimensional setting using the two-layer quasigeostrophic

(QG) model (Smith et al. 2002). The model describes

two-dimensional vorticity dynamics in geophysical flows

with baroclinic instabilities. Although much simpler

than actual weather prediction models, the QG model

describes flows spanning many scales, and therefore is

useful for this study. Horizontal model grid dimension is

1283 128 with doubly periodic boundary conditions. Let

x and y be the coordinates in the zonal and meridional

FIG. 4. Error spectrum averaged over all the analysis cycles for the test cases using serial EnSRF in theN5 40 and

F5 8 scenario. The cases using theMSOmethod are shownwhere observations are decomposed into (a)–(d)Ns5 1

(single scale), 2, 3, and 7 scale components. Each panel shows the true observation error (Lo*), specified obser-

vation error (Lo), prior error (Lb*) and spread (Lb), and posterior error (La*) and spread (La). The spectrum

plotted here corresponds to the square root of the diagonals of L matrices. The posterior error spectrum from

running EnSRF with correctly specified L is shown as black dotted lines on each panel for reference.
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directions, and subscripts 1 and 2 indicate the top and

bottom layer, respectively. Background streamfunction is

c1 52Uy and c2 5Uy, where U is the mean flow. The

governing equations are

›q
1

›t
1 J(c

1
,q

1
)1U

›q
1

›x
1 (b1 k2

dU)
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2
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2
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2
5 0,

(18)

where qi 5=2ci 2 (21)i(k2
d/2)(c2 2c1), i 5 1, 2, are the

perturbation potential vorticity, c is the perturbation

streamfunction, and J denotes the Jacobian term.Model

parameters include theRossby deformationwavenumber

(kd), themeridional gradient of theCoriolis force (b), and

theEkman bottomdrag strength (b). The scale defined by

k21
d features energy injection due to baroclinic instability,

while b and b define the Rhines scale at which the inverse

cascade of kinetic energy halts. This model configuration

follows the control experiment in Ying et al. (2018): kd 5
20, b 5 16, U 5 0.2, and b 5 0.5. The potential temper-

ature u is chosen as the model state variable for assimi-

lation in this study, because its spectrum resembles the

real atmospheric temperature and kinetic energy spectra.

Let k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
be the horizontal total wavenumber, so

the maximum wavenumber for the model grid is kmax 5
63. The u field is converted from streamfunction in

spectral space,

û(k)52k ĉ(k) . (19)

A nature run is first obtained to provide the verifying

truth. Figure 5a shows a snapshot of the true u field.

Synthetic observations are then generated by adding

randomly drawn errors to the truth field. A uniform

observation grid with horizontal spacing of 3 model grid

points is used. The u variable is directly observed, but

only available at the topmodel layer. Observation errors

are drawn from a first-order autoregressive spatial ran-

dom process. Figures 5b and 5c show snapshots of ob-

servation error fields with standard deviation s*5 3 and

spatial correlation r* 5 0 and 0.6, respectively.

Only the serial EnSRF is implemented for the QG

model (the EnSRF is not computationally feasible) and

tested with the MSO and MSL methods. To determine

the ROIs specified in the MSL method, a set of sensi-

tivity experiments are performed to determine the best

ROIs for different scales. The QG model states are ar-

bitrarily decomposed into three scale components: large

(k 5 0–5), medium (k 5 6–12), and small (k 5 13–63)

scales. Figure 6 compares the spectra of posterior error

and ensemble spread using ROIs ranging from 8 to 24

grid points for the r* 5 0 and 0.6 cases. The reference

spectrum has a 23 slope, which corresponds to the for-

ward enstrophy cascade in QG dynamics. The uncorre-

lated observation error spectrum has a 11 slope (white

noise), and the correlated one has increased spectral

error variances at large scale and decreased at small

scale. Note that the spectra are plotted on a log-log scale.

For r* 5 0 (Fig. 6a), the posterior error spectral vari-

ances are concentrated at the medium scale, since the

large scale is well constrained by the observations and

the small scale has low reference error variances to be-

gin with. Since the observing network is at lower spatial

resolution, the small scale lacks observation information

and the posterior errors are mostly saturated (close to

reference level). The best ROI is 24 grid points for the

large scale and 12 grid points for the small scale, con-

sistent with findings from Ying et al. (2018). For r*5 0.6

(Fig. 6b), the posterior error spectral variances are more

concentrated in the large scale. Underspecification of

TABLE 2. Test of serial EnSRF with the MSO method for the

Lorenz-96 model experiments under different scenarios. For each

scenario, the EnSRF solution with correctly specifiedL5 5 provides

the ‘‘best performance’’ for reference, and the serial EnSRF is run

with the observations decomposed into Ns 5 1, 2, . . . , 7 scale com-

ponents. Note that Ns 5 1 is the single scale serial EnSRF without

MSO. For each case, the posterior RMSE and CR are shown along

the manually tuned localization ROI and prior inflation factor l.

Scenarios RMSE CR ROI l

N 5 40, F 5 8:

EnSRF (L 5 5) 0.158 1.01 55 1.04

Serial EnSRF (L 5 0):

Ns 5 1 (single scale) 0.370 1.05 50 1.06

Ns 5 2 0.200 1.09 50 1.10

Ns 5 3 0.171 1.03 55 1.06

Ns 5 4 0.165 1.03 55 1.06

Ns 5 5 0.163 1.04 55 1.06

Ns 5 7 0.162 1.05 55 1.06

N 5 20, F 5 8:

EnSRF (L 5 5) 0.162 0.99 40 1.06

Serial EnSRF (L 5 0):

Ns 5 1 (single scale) 0.372 1.09 35 1.12

Ns 5 2 0.217 1.13 35 1.22

Ns 5 3 0.180 1.06 35 1.12

Ns 5 4 0.174 1.07 35 1.12

Ns 5 5 0.173 1.07 35 1.12

Ns 5 7 0.176 1.10 35 1.14

N 5 40, F 5 7.5:

EnSRF (L 5 5) 0.280 0.92 45 1.40

Serial EnSRF (L 5 0):

Ns 5 1 (single scale) 0.449 1.05 40 1.20

Ns 5 2 0.319 1.01 45 1.40

Ns 5 3 0.294 0.95 45 1.40

Ns 5 4 0.286 0.94 45 1.40

Ns 5 5 0.284 0.94 45 1.40

Ns 5 7 0.283 0.94 45 1.40
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observation error spectral variances at the large scale

causes the posterior ensemble to be underdispersive.

This case seems to display a stronger scale dependency

in best ROIs. The favorable ROIs actually exceed the

range shown in Fig. 6b. The best ROI is 32 grid points for

the large scale and 4 grid points for the small scale.

The three scale components defined above are used

for both the MSO and MSL methods. The ROIs are set

to 24, 16, and 8 grid points for the three components in

the MSL method. For the MSO method, the spectral

observation error variance adjustment factors lo
s are set

to 2.4, 1.5, and 0.8 for the three scale components ac-

cording to the mismatches between the specified and

true observation error spectral variances. An adaptive

prior inflation algorithm is implemented based on in-

novation statistics (Hollingsworth and Lönnberg 1986;

Desroziers et al. 2005) to avoid manual tuning. At each

analysis cycle, a maximum likelihood estimate gives the

prior inflation factor:

l5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Ny

j51

var(ybj )

�
Ny

j51

(yoj 2 ybj )
2
2�

Ny

j51

s2
o,j

vuuuuuuuut . (20)

A relaxation to prior perturbation method (Zhang et al.

2004) is also applied with a fixed coefficient a 5 0.5

(chosen by trial and error) to provide some posterior

inflation, since prior andposterior inflationmay ameliorate

different kinds of suboptimalities during DA (El

Gharamti et al. 2019).

FIG. 5. Snapshots of (a) the QG model u field from the truth simulation, and its corresponding observation error fields for the (b) r* 5 0

(uncorrelated errors) and (c) r* 5 0.6 cases. The observation locations are indicated by the dots.

FIG. 6. Error spectra averaged over 200 analysis cycles compared for the (a) r* 5 0 and (b) r* 5 0.6 cases. The

reference spectrum (gray line) is error from a free ensemble forecast without data assimilation. The true and

specified observation error spectra are shown as black solid and dotted lines, respectively. The posterior error

spectra from serial EnSRF using ROI5 8–24 grid points are shown as solid lines color coded from blue to red, their

corresponding ensemble spread spectra are shown as dotted lines with the same colors.
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Cycling DA experiments are conducted using N 5 20

ensemble members and assimilating the observations

with correlated errors (r*5 0.6) every 0.05 time units for

200 cycles. The cycling period is long enough so that the

posterior errors have time-lagged correlations of nomore

than 0.2, and thus can be treated as quasi-independent

samples for performance metrics. Tests are first con-

ducted in a perfect model scenario. Four experiments are

compared: the original single-scale serial EnSRF with

ROI 5 16, and the serial EnSRF with the MSO, MSL,

and MSOL methods.

Figure 7 compares the averaged spectra of posterior

error and ensemble spread from each method. More

quantitatively, the first section of Table 3 summarizes

the averaged posterior RMSE and CR for the three

scale components. All comparisons of RMSE between

different methods have passed the student t test at p ,
0.01 significance level. The underspecified observation

error spectral variances at the large scale causes the

single-scale filter solution to be severely underdispersive

(CR5 0.13) at the large scale. The MSL method lowers

the posterior error spectral variances for all wave-

numbers, but the large-scale component is still under-

dispersive (CR5 0.27). Spatially correlated observation

errors can also be considered as locally biased large-

scale observation errors (Wilks 1995, section 5.2.3).

Assimilating these observations assuming uncorrelated

errors will cause the posterior ensemble to overfit the

observations and also become locally biased (hence

the low CR). The MSO method significantly improves

the large-scale component of the posterior ensemble,

reducing RMSE and bringing the CRmuch closer to 1.

The posterior ensemble no longer overfits the observa-

tions because the large-scale observation error variances

are inflated. The MSOL method produces the lowest

posterior RMSE for all three scale components. The

MSL method seems to cause the large-scale posterior

ensemble to be underdispersive and small-scale en-

semble to be overdispersive, which is adjusted during

themodel forecast steps to produce an overall consistent

prior ensemble (not shown). The interplay between

scale-dependent error growth during forecast and error

reduction during DA calls for further investigation in

more complex models.

The experiments are repeated under another scenario

wheremodel parameter error exists in the forecast steps.

The forecast model has kd 5 10 such that the peak

baroclinic instability generation is shifted toward larger

scales, causing smaller scales (k . 10) to be less ener-

getic than the true model (kd 5 20). The second

section in Table 3 shows that the presence of model

error increases the overall posterior RMSEs. The time

averaged adaptive prior inflation factor also increases

from 0.98 to 1.07. However, the MSOL method still

improves the performance over the single-scale method,

and the impact from the MSO and MSL methods are

similar to those found in the perfect model scenario. The

only difference is that the MSL method improves the

small-scale component more than the MSO method for

the imperfect model scenario.

5. Discussion

The current study uses an idealized observing network

to demonstrate the suboptimality in ensemble filtering

FIG. 7. Posterior error spectra averaged over 200 analysis cycles

compared for cases with r*5 0.6 and using the original single scale

serial EnSRF (blue), and serial EnSRF with theMSL (cyan), MSO

(yellow), andMSOL (red)methods. Their corresponding ensemble

spread spectra are shown as dotted lines with the same colors. The

reference spectrum (gray line) is error from a free ensemble fore-

cast without data assimilation. The true and specified observation

error spectra are shown as black solid and dotted lines, respectively.

TABLE 3. Test of the multiscale approach to assimilate obser-

vations with r* 5 0.6 using the QG model. Two scenarios using

perfect and imperfect models are tested. In each scenario, results from

the single scale serial EnSRF with ROI 5 16, and the serial EnSRF

with the MSL, MSO, and MSOL methods are compared. The pos-

terior u field is decomposed into large, medium, and small scales, and

averaged posterior RMSE and CR are computed for each scale.

Scenarios

Large scale

Medium

scale Small scale

RMSE CR RMSE CR RMSE CR

Perfect model:

Single scale 1.853 0.13 1.564 0.63 2.547 1.11

MSL 1.331 0.27 1.140 0.97 1.694 1.40

MSO 0.498 0.75 0.789 1.03 1.617 0.92

MSOL 0.370 0.43 0.678 0.99 1.427 1.24

Imperfect model:

Single scale 2.522 0.17 1.912 0.70 2.479 1.03

MSL 1.467 0.35 1.181 1.09 1.720 1.21

MSO 0.646 0.90 0.930 1.12 1.774 0.78

MSOL 0.517 0.45 0.819 1.07 1.557 1.17
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performance due to mis-specified observation error

statistics and test the proposed MSO method as a rem-

edy. The idealized observing network is uniform in

space and time, its observation error is modeled as a

first-order autoregressive process with constant variance

s2 and correlation length scaleL in space and time. Such

idealized observations are hard to find in real applica-

tion scenarios. Typically, observations are not distrib-

uted uniformly in space and time, and the statistics of

representation errors also vary in space and time due to

the flow dependency inmodel forecast errors (Janjić and

Cohn 2006; Waller et al. 2014). The true observation

error statistics are ultimately unknown, which is even

more challenging. In this section, potential approaches

for extending the MSO method to more realistic sce-

narios will be discussed.

For a nonuniform observing network, scale decom-

position cannot be performed with a pair of fast Fourier

transforms. A spatial averaging approach similar to

superobbing can be used instead. Observations are av-

eraged within each grid box of a uniform grid at a certain

resolution. The smoothed observation defined on the

low-resolution grid represents its large-scale compo-

nent. Due to the spatial inhomogeneity of observations,

some grid boxes will have too few observations to pro-

vide robust statistics for the large scale, therefore shall

be marked as missing values and discarded by the filter.

To find the smaller-scale component, the large-scale

component can be subtracted from the original obser-

vations and spatial averaging can be applied again with

higher-resolution grid corresponding to the smaller

scale. This procedure will be repeated for the total

number of scale components, resulting in a multigrid

representation of the original observations, which will

then be used as observation scale components in the

MSO method.

The MSO method uses an adjustment factor lo
s to

change the observation error variance for the sth scale

component. In this study, the correct factors are given by

lo
s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lo

s
*/Lo

s

q
, (21)

whereLo
s
* is the true observation error spectral variance

and Lo
s is the originally specified one. In real application

scenarios, Lo
s
* is unknown and has to be estimated

through observation-space innovation statistics (e.g.,

Hollingsworth and Lönnberg 1986; Desroziers et al.

2005; Bowler 2017; Howes et al. 2017). For example, the

innovation statistics for the sth scale component can be

written as

(lo
s )

2Lo
s 1 (lb

s )
2
Lb

s 5E[(yos 2 ybs )
2
] , (22)

where yos is the observation and ybs is the observation

prior ensemble mean, lo
s and lb

s are adjustment factors

for the specified observation error and prior error

spectral variances. This study only considers the case

where Lo
s 6¼Lo

s
* due to mischaracterization of observa-

tion error correlation length scale L. Therefore, assume

Lb
s 5Lb

s
*, lb

s 5 1, and (22) will provide a maximum

likelihood estimate for lo
s . In a more general case, the

prior error variances may also be mis-specified due to

other suboptimalities (e.g., sampling noises), then lb
s can

be estimated as an adaptive inflation factor to adjust the

prior error variances. The method described in Li et al.

(2009) can provide simultaneous estimate for both ad-

justment factors lo
s and l

b
s using the innovation statistics.

Since spatial correlation in representation errors may be

actually caused by the prior errors, adjusting the prior

inflation factors lb
s to account for the effect of these

spatial correlationsmay be an alternativemethod.Adaptive

inflation methods using Bayesian formulations (Anderson

2009; Miyoshi 2011; El Gharamti 2018) can be borrowed to

estimate a spatially and temporally varying lo
s , so that the

MSO method can be applied to nonuniform observing

networks.

Another concern is the increase in computational cost

for the MSO method. As described in this paper, the

MSOmethod increases the number of observations by a

factor of Ns, which is the number of scale components.

Using a multigrid representation, however, would only

increase the number of observations by a factor of no

more than 2, since larger-scale components would have

fewer number of observations. Different model vari-

ables may have different spectral error variance distri-

butions. For example, wind and temperature tend to

have errors in the larger scales compared to precipita-

tion and vertical motion. Complex scale interactions

among state variables may also occur. Determining the

cutoff wavenumbers for each scale component may be a

nontrivial task for real models. Adaptive algorithms will

be needed to turn on the MSO method when mis-

matches in spectral error variances are detected and

scale decomposition is performed to optimally adjust

the spectral error variances. The cost-benefit analysis of

spending computational resources on ensemble size and

model resolution has been performed in previous stud-

ies (e.g., Lei and Whitaker 2017). Similar analysis can

also be performed for the number of scale components

for real application.

6. Conclusions

In this study, the suboptimality in ensemble square

root filters (EnSRF) due to mischaracterizing the ob-

servation error spatial correlations is evaluated using the
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Lorenz-96 model. The true observation errors have

spatial correlations that are neglected by the serial

EnSRF, resulting in suboptimal filter performance. The

mismatches between specified and true observation er-

ror spectral variances cause the analysis ensemble to be

overdispersive at small scales and underdispersive at

large scales. As the spectral distribution is vastly dif-

ferent between correlated and uncorrelated observation

errors, a scale-dependent adjustment of observation

error variances is needed to reduce such suboptimality,

which motivates the multiscale approach. The proposed

multiscale observation (MSO) method decomposes ob-

servations intomultiple scale components using a spectral

bandpass filter and assimilates each component with ad-

justed observation error variances to update the model

state iteratively. Lorenz-96 model experiments indicate

that the solution from the serial EnSRF with the MSO

method approaches the solution from the EnSRF with

correctly specified observation error correlations as the

number of scales increases. The MSO method is further

tested with a more complicated two-layer quasigeo-

strophic (QG) model. The serial EnSRF is implemented

with the MSO method to assimilate observations with

spatially correlated errors. The MSO method is capable

of reducing the suboptimality due to mischaracterization

of observation error correlations in both perfect and

imperfect model scenarios. The multiscale localization

(MSL) method is also applied to allow the use of dif-

ferent localization radii when updating the model state

at different scales. The QGmodel state spans a range of

spatial scales, therefore its large-scale component favors a

longer localization radius, and small-scale favors a shorter

radius. The MSL method improves filter performance

compared to the single-scale serial EnSRF with a fixed

localization radius. Combining the MSO and MSL, the

MSOL multiscale approach gives the best filter perfor-

mance in terms of analysis error and consistency between

error and ensemble spread. Although the MSO method

is only tested in very idealized settings in this study

(uniform observing network, simple observation error

model, and known true statistics), the underlying concept

of adjusting the observation error spectral variances is

potentially applicable to realistic scenarios. Using inno-

vation statistics to estimate a spatially and temporally

varying observation error adjustment factor for each

scale component, the MSO method can be potentially

applied to nonuniform observing networks with inho-

mogeneous error statistics. Future studies will further

investigate the cost and benefit of the MSO method in

realistic prediction systems.
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