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ABSTRACT

High-resolution models nowadays simulate phenomena across many scales and pose challenges to the

design of efficient data assimilationmethods that reduce errors at all scales. Smaller-scale features experience

rapid nonlinear error growth that gives rise to displacement errors, which cause suboptimal ensemble filter

performance. Previous studies have started exploring methods that can reduce displacement errors. In this

study, a multiscale alignment (MSA)method is proposed for ensemble filtering. TheMSAmethod iteratively

processes the model state from the largest to the smallest scales. At each scale, an ensemble filter is applied to

update the state with observations, and the analysis increments are utilized to derive displacement vectors for

each member that align the ensemble at smaller scales before the next iteration. The nonlinearity in smaller-

scale priors is reduced by removing larger-scale displacement errors. Because the displacement vectors are

derived from analysis increments in the state space rather than the nonlinear observation-space cost function

formulated in previous studies, this method provides a less costly and more robust way to solve for the

displacement vectors. Observing system simulation experiments using a two-layer quasigeostrophic model

were conducted to provide a proof of concept of the MSA method. Results show that the MSA method

significantly improves the accuracy of posteriors compared to the existing ensemble filter methods with or

without multiscale localization. Advantage of the MSA method are more evident when the ensemble size

is relatively small and the cycling period is comparable to the average eddy turnover time of the

dynamical system.

1. Introduction

Data assimilation (DA) seeks to reduce the errors

in model initial conditions with information derived

from observations. As model resolution increases,

model states can resolve features across an increasing

range of scales. High dimensionality and nonlinearity of

model states pose challenges to the design of an efficient

DA method that can simultaneously reduce errors at

all resolved scales. One major difference between large-

and small-scale errors is their different physical corre-

lation scales in space and time. Smaller-scale features,

such as individual convective systems in atmospheric

models, tend to experience faster temporal evolution

and more rapid error growth, therefore having shorter

correlation lengths than larger-scale features. DA

methods need to adapt to different error characteris-

tics across scales, which motivated the investigation of

multiscale methods in previous studies (e.g., Li et al.

2015). In ensemble-based DA methods such as the

ensemble Kalman filter (Evensen 1994), localization

techniques are used to reduce the impact of sampling

errors in correlations due to limited-size ensemble

(Hamill et al. 2001). Multiscale localization methods

were also proposed to adapt to different spatial scales

in error covariance (Zhang et al. 2009; Miyoshi and

Kondo 2013; Buehner and Shlyaeva 2015).

Another important difference in error characteristics

between large and small scales is the fact that the small-

scale errors are often non-Gaussian due to nonlinear

error growth. The nonlinearity often manifests as dis-

placement errors that are errors in the position of co-

herent features. Studies have shown that even if the

errors in feature position are Gaussian, the resulting

errors of the state can be non-Gaussian, which cause

ensemble Kalman filters to perform suboptimally

(Lawson andHansen 2005; Chen and Snyder 2007). For

relatively small-scale features in atmospheric models,

such as hurricanes and mesoscale convective and cloud

systems, these displacement errors can be challenging

for DA. For example, position errors among prior en-

semble members can lead to some members being

cloud free while others being cloudy, which leads to a

fat-tail prior error distribution (Geer and Bauer 2011).Corresponding author: Yue Ying, mying@ucar.edu
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Substantial displacement errors due to model bias

can limit the performance of convective-scale DA

(e.g., Xue et al. 2014; Dawson et al. 2015; Yussouf

et al. 2015).

To alleviate the negative impact of displacement er-

rors, methods that reduce position errors from the prior

ensemble have been investigated. For hurricane DA,

the relocation of the hurricane vortex was proposed

as a preprocessing step to reduce position errors (Hsiao

et al. 2010). In the image processing literature, methods

have been studied for deriving the displacement vec-

tors, also known as an ‘‘optical flow,’’ between two

frames in a movie (e.g., Horn and Schunck 1981). The

optical flow is typically derived byminimizing themisfit

between the target image and the source image dis-

placed by the optical flow. Extending the optical flow

idea to the problem of DA, the feature calibration

and alignment (FCA) technique (Hoffman et al. 1995;

Hoffman and Grassotti 1996; Nehrkorn et al. 2003) was

introduced to partition prior errors into contributions

from position and amplitude errors, which can then be

separately evaluated. DA methods that explicitly esti-

mate and reduce displacement errors were proposed

(Brewster 2003; Ravela et al. 2007; Beezley and

Mandel 2008), and implemented in the variational

framework (Nehrkorn et al. 2014, 2015), and more re-

cently in the ensemble-based method (Stratman et al.

2018). Typically, the FCA technique has a two-step

formulation. First, the displacement vectors are esti-

mated by minimizing a cost function, which contains a

misfit term between the observations and the modeled

observation from the displaced prior, as well as some

penalty terms that impose physical constraints to the

displacement vectors. Second, the displacement vec-

tors are applied to each member to align the prior en-

sembles, and a normal DA step ensues.

The observation-space nonlinear cost function for-

mulation currently adopted by the FCA technique faces

some challenges when applying to atmospheric DA.

Since the model state has large dimension and the small-

scale features are highly nonlinear, the cost function can

be ill-conditioned with complex topology and local

minima. Observations that are sparse in space and

nonlinearly related to the state, a common scenario in

atmospheric DA, also complicate the nonlinear cost

function. On the other hand, atmospheric DA meth-

odology is much advanced in terms of dealing with the

nonlinear relation between the state and observa-

tions. For example, the localized particle filters (e.g.,

Poterjoy 2016; Poterjoy et al. 2017) have demon-

strated skill in handling nonlinear observations in

high-dimensional systems. It will be favorable if the

existing nonlinear filtering methods can be exploited

to solve the displacement problem. For displacements

larger than the sizes of features that cause nonlinearity, a

multiscale strategy was proposed as a solution in the

image processing literature (Meinhardt-Llopis et al.

2013), where the optical flows are first derived using

coarsened images, and iteratively refined with more de-

tails from images with gradually increasing resolution.

In this study, a multiscale alignment (MSA) method is

proposed for reducing displacement errors in ensemble-

based DA. The multiscale strategy is adopted to itera-

tively process the model state from large to small scales.

At each scale, an ensemble filter is first applied to update

the prior state, the resulting analysis increment is then

utilized to derive the displacement vector for that scale.

The larger-scale displacement vectors are applied to the

smaller-scale state to align the prior ensemble before the

next iteration. The ensemble filter handles the relation

between the state and the observations, and the dis-

placement vectors are derived in a similar fashion to the

optical flow between two images, which is solving the

problem in the state space as opposed to the nonlinear

observation space formulation of FCA. The ability of

large-scale displacement vectors to correct small-scale

position errors depends on the physical relation between

the prior errors at these scales, which is modeled as a

cross-scale error covariance in multiscale DA. The

alignment using large-scale displacements will reduce

the small-scale errors if the prior errors are well corre-

lated across scales, which is often the case for small-scale

atmospheric features to have position errors due to

systematic errors in large-scale background flows.

The paper is organized as follows. Section 2 provides

a complete mathematical formulation of the proposed

MSA method. Section 3 describes the design of nu-

merical experiments to test the method and compare it

to the existing multiscale localization and ensemble fil-

tering methods. Section 4 shows some results as a proof

of concept of the MSA method, and section 5 summa-

rizes the findings of this study.

2. The multiscale alignment method

a. Ensemble filtering with treatment for displacement
errors

LetX be the state variables of the dynamical system of

interest, and X* denotes the true state. The observation

of the state is defined as

Y5H(X*)1 eo , (1)

where H is an observation operator that maps state

space to observation space, and eo is an observation

error that reflects uncertainties in measurements.
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Here, the observation error is assumed to follow a

Gaussian distribution, eo ;N (0, R), where R is the ob-

servation error covariance. DA seeks to update a prior

estimate of the state Xb using the information obtained

from the observation to provide a better estimate called

the analysis Xa. Here, the superscripts b and a denotes

background (prior) and analysis (posterior) states, re-

spectively. Ensemble filtering methods treat the DA

problem as a collection of analysis cycles in time. At

each cycle, the observations near that time are assimi-

lated, and the resulting analysis is used to initialize model

forecasts that provide the prior for the next cycle.

Consider the coherent features in the state of a dy-

namical system (e.g., a cyclone, a line of organized

convection), the uncertainties in the prior estimate can

be viewed as due to displacement errors (errors in po-

sition) ed or amplitude errors in the feature er (also

called a residual error). The prior state can thus be

written as

Xb 5X*1 ed 1 er . (2)

To describe position errors of features in the state, a set

of displacement vectors can be used. In this study, the

displacement vectors q 5 (u, v) are only considered in

the two horizontal directions (x and y). The model state

X is defined on a spatially discretizedmodel grid that has

nX grid points indexed by i. The ith grid point has hor-

izontal coordinates (xi, yi) and displacement vector qi 5
(ui, yi). Let X(q) denote the state X displaced by q. The

ith grid point is displaced from (xi, yi) to (xi2 ui, yi2 yi),

and the value for X(q) can be found by horizontal in-

terpolation from the original X. The displacement error

can be expressed as ed 5 Xb 2 Xb(q), and the residual

error er 5Xb(q)2X*. The total prior error is eb5 ed1 er.

The residual error er is assumed to follow a Gaussian

distribution, er ;N [0, B(q)], where its error covariance

B(q) depends on the displacement q. The displacement

error ed, however, is only nearly Gaussian when the size

of displacement is small compared to the horizontal

scale of displaced features. When displacement is large,

Xb(q) becomes a nonlinear function of the displacement

that gives rise to a non-Gaussian ed distribution, which

will cause linear Gaussian filtering methods to be

suboptimal.

Following Ravela et al. (2007), an ensemble filtering

scheme that explicitly treats large displacement errors

can be described as follows. According to Bayes’s rule,

the joint posterior distribution of X and q given the

observations Y can be written as

p(X, q jY)} p(YjX, q) p(Xjq) p(q) . (3)

The observation likelihood can be written as

p(YjX,q)5 (2p)2nY /2jRj21/2 exp

�
2
1

2
kY2H[X(q)]k2R

�
,

(4)

where nY is the number of observations and jRj is the
determinant ofR. Here, the notation kak2A is a shorthand

for aTA21a, which is the squared norm of a vector a

normalized by a covariance matrix A. The distribution

p(Xjq) characterizes the residual error er given the dis-

placement q, which is also known as the amplitude

distribution:

p(Xjq)5(2p)2nX /2jB(q)j21/2 exp
�
2
1

2
kX(q)2Xb(q)k2B(q)

�
.

(5)

The distribution p(q) describes the uncertainty of the

displacement, which is also called the displacement dis-

tribution. Typically, a function L(q) can be formulated

so that it increases as the displacement deviates from

some physical constraints, and the displacement distri-

bution can be expressed as p(q) } exp[2L(q)]. For

example, a smoothness constraint is written as

L(q)5�
nX

i51

a2

"�
›u

i

›x

�2

1

�
›u

i

›y

�2

1

�
›y

i

›x

�2

1

�
›y

i

›y

�2
#
,

(6)

where a2 is a weighting factor that controls the strength

of the constraint. With all terms in (3) explicitly

defined, a cost function can be formulated by taking its

negative logarithm and omitting the constant term,

which yields

J(X, q)5
1

2
kY2H[X(q)]k2R 1

1

2
kX(q)2Xb(q)k2B(q)

1
1

2
ln(jB(q)j)1L(q) . (7)

The analysis isXa5X0(q0), whereX0 and q0 are found at

the minimum of the cost function, which can also be

expressed in terms of increments from the prior:

Xa 5Xb(q0)1 dXr 5Xb 1 dXd 1 dXr . (8)

The displacement increment dXd 5 Xb(q0) 2 Xb is the

result from displacing the prior with displacement q0,
and the amplitude increment dXr 5 X0(q0) 2 Xb(q0) is
the additional amplitude adjustment made to the

displaced field.

To obtain an estimate of the flow-dependent error

covariance, a set of ensemble forecasts can be employed

to compute sample estimates of statistics of the prior

distribution (Evensen 1994). Each ensemble member
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provides a different realization of the prior Xb with

different displacement and residual errors. Estimates of

the first two moments of the prior distribution can be

derived from the ensemble mean and covariance. The

goal of ensemble filtering with displacement errors is to

update each member with increments q0 and dXr so that

the resulting posterior ensemble becomes samples from

the posterior distribution (3), and this can be done by

minimizing (7) for each member with Xb from the par-

ticular member and B(q) estimated from the ensemble.

b. Iterative cost function minimization with
multiscale strategy

Direct minimization of the cost function in (7) is dif-

ficult, because X(q) is a highly nonlinear function of q

and the dependency of B on q complicates the calcu-

lation of gradients of the cost function. For high-

dimensional systems, the linearization of the cost

function around a reference point is necessary to allow

efficient computation. When the global cost function

minimum is too far away from the prior estimate, the

analysis can be found iteratively with a linearization of

the cost function around successive solutions during

each iteration. Employing a multiscale strategy during

iteration can potentially improve the convergence

rate. Similar strategies are used in the incremental

formulation of the four-dimensional variational method

(Courtier et al. 1994), where the minimization of the cost

function is performed at gradually increasing model

resolutions.

The MSA method adopts a multiscale strategy that

treats the state as a sum of different scales, and the so-

lution for q0 and dXr are found iteratively at scale s5 1,

2, . . . , ns from the largest to the smallest scales. Scale

decomposition can be performed through a series of

spectral filters, which are defined as transform matrices

Fn that map the state X to its scale s component Xs 5
FsX. The sum of all Fs gives the identity matrix. Simi-

larly, q0
s 5 (Fsu

0, Fsv
0) are the displacement vectors at

scale s.

Let X(s) denote the state before the sth iteration.

Initially, X(1) 5 Xb is set for each member. The analysis

step at the sth iteration calculates increments q0
s and

dXr
s, and adjusts the state as

X(s11) 5X(s)(q0
s)1 dXr

s . (9)

The state X(s) has incorporated all the previous in-

crements at scales 1 to s2 1. At scale s, for larger scales

X
(s)
1 , . . . , X

(s)
s21, the displacement q0

s can be omitted, be-

cause the resulting displacement increments are ap-

proximately Gaussian and can be accounted for by

the amplitude increments instead. For smaller scales

X
(s)
s11, . . . , X

(s)
ns
, however, the displacement q0

s needs to be

explicitly applied to the state through interpolation

due to nonlinearity. For the X(s)
s (q0

s) term, since q0
s and

X(s)
s are of the same scale, a first-order Taylor expansion

gives

X(s11)
s 5X(s)

s 1=X(s)
s � q0

s 1 dXr
s . (10)

The MSA method finds q0
s and dXr

s in two steps. The

first step is a DA step that determines the combined

increment dXs 5=X(s)
s � q0

s 1 dXr
s through assimilating

observations. The second step is an alignment step that

uses dXs to determine the corresponding displacement

q0
s. After finding the increments, the adjusted full state

becomes

X(s11) 5�
s

r51

X(s)
r 1 dX

s
1 �

ns

r5s11

X(s)
r (q0

s) . (11)

The DA step uses the observations Y to adjust the

state at scale s, which is equivalent to modifying the cost

function in (7) to only allow changes in dXs and holding

everything else constant:

J(dX
s
)5

1

2
kY2H(X(s) 1 dX

s
)k2

R
1

1

2
kdX

s
k2
B(q)

1C .

(12)

Here, the error covariance B(q) characterizes the re-

sidual errors after removing displacement errors from

the previous scales, which can be estimated from the

ensemble of X(s)
s . The displacement increment =X(s)

s � q0
s

is relatively Gaussian since q0
s is of the same scale as the

state X(s)
s . An ensemble filter will compute the analysis

increment as

dX
s
5 cov[X(s)

s ,H(X(s))]fcov[H(X(s))]

1Rg21[Y2H(X(s))] , (13)

where covfX(s)
s , H[X(s)]g is the covariance between the

observation prior and the prior state filtered at scale s,

and cov{H[X(s)]} is the covariance between the obser-

vation prior and itself; both covariances are estimated

from the ensemble. There are many variants of ensem-

ble filters available for solving (13). More details on the

particular choice of ensemble filter and its parameters

will be provided in the next section.

The alignment step determines for each ensemble

member the partitioning of the total analysis increment

dXs into displacement and amplitude parts. Since this

partitioning does not change dXs, the observation misfit

term (first term) in cost function in (7) remains un-

changed. Both the residual error term (second term) and

the third term in (7) will decrease as the displacement q0
s
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replaces part of dXs and the residual error characterized

by B(q) decreases. The modified cost function for find-

ing q0
s becomes

J(q0
s)5 kX(s11)

s 2X(s)
s (q0

s)k
2
1L(q0

s) , (14)

where the first term can be further expressed as

kdX
s
2=X(s)

s � q0
sk

2
5 �

nX

i51

 
dX

s,i
2
›X

(s)
s,i

›x
u0
s,i 2

›X
(s)
s,i

›y
y0s,i

!2

,

(15)

and the second term takes the form of (6). The same type

of cost function was formulated for finding optical flows

in Horn and Schunck (1981), and can be solved by the

algorithm provided therein. Thanks to the comparable

scale between q0
s andX(s)

s that allows the linearization of

the X(s)
s (q0

s) term, the Euler–Lagrange equation for cost

function in (14) results in a Poison equation for q0
s, which

is less costly to solve than the original nonlinear cost

function in (7).

After finishing all iterations, the final updated version

of the full model state X(ns11) becomes the analysis Xa.

3. Numerical experiment design

A multiscale DA test system is built to facilitate nu-

merical experiments that evaluate the performance of

the proposed multiscale alignment method. The two-

layer quasigeostrophic (QG) model (Smith et al. 2002)

is chosen as the dynamical system. This model de-

scribes the two-dimensional vorticity dynamics for

geophysical flows with baroclinic instability as a source

for kinetic energy. Although much simpler than the

atmospheric models used in real weather forecast, this

nondimensionalized model can describe flows with

motions across many scales and is suitable for the

purpose of this study. The model domain has 128 grid

points in each horizontal direction and two vertical

layers, so that the maximum horizontal wavenumber is

kmax 5 63. The Rossby deformation wavenumber is set

to kd 5 20; the Rhines scale is set to kb5 4; the velocity

scale is U 5 0.2 and the bottom drag coefficient is r 5
0.5. An exponential cutoff filter is applied to k . 40 to

remove energy buildup at the smallest scales. The same

model configuration was used for the CNTL experi-

ments in Ying et al. (2018) that evaluate the scale de-

pendency of covariance localization; more detailed

description of these model parameters can be found

there. Changing parameters (kd, kb, U, and r) can alter

the scaling of the model and therefore its behavior. For

example, in Ying et al. (2018), the S_Scale experiment

sets parameters kd5 35,U5 0.6, and r5 20, so that the

model is much more energetic at small scales. For

such a model dominated by small scale processes, the

MSA method is expected to be less effective since

the small scales are less related to the large-scale

components.

Three spatial-scale ranges are defined according to the

total horizontal wavenumber k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
as large (L;

k # 5), medium (M; 5 , k # 15) and small (S; k . 15)

scales. The three scales lead to three corresponding it-

erations forMSA algorithm. Amodificationmade in the

current study is that the temperature field u is used as the

state variable instead of the streamfunction c, because

the temperature field has a similar energy spectral

distribution to the horizontal winds, following the

23 power law. In spectral space, the two variables are

related as uk 5 2kck. Note that there is a one-to-one

relation between the c and u fields; therefore, using ei-

ther one will fully describe the state. The u field was

chosen as the state variable so that there are more fea-

tures in the smaller scales in contrast to using c.

An observing system simulation experiment (OSSE)

is designed to test the proposedmethod with cycling DA

trials, under the assumption that the model is perfect

and the only source of errors is the initial condition. The

QG model is first spun up to its quasi-steady climatol-

ogy, then a period of 100 time units is sampled from this

climatology as the truth trajectory. With this model

configuration, the state features several positive and

negative temperature anomalies associated with anti-

cyclonic and cyclonic vortices that travel predominately

westward. Doubly periodic boundary conditions allow

these anomalies to evolve freely throughout their whole

life cycles. The baroclinic instability due to difference

between the two model layers generates small-scale

vortices that interact with each other and the larger-

scale vortices.

As a measure of the typical time scales of vortex life

cycles, the eddy turnover time is on average 0.5, 0.3, and

0.2 time units for the L, M, and S scales, respectively. The

smaller scales vortices evolve more rapidly and have

shorter life cycles. The observing network is designed to

provide information at every third grid point in each

direction and is only available from the top model

layer. Figure 1 shows a snapshot of the observation

along with the truth model state. The identity observa-

tion operator is used (directly observing the u field) for

the sake of simplicity. Spatial inhomogeneity in the

observing network is also not considered in this study.

The observations are available every 0.05 time units.

The u fields have a climatological variability of ;10

(standard deviation). The observation errors, which are

assumed to be uncorrelated in time and space, are

DECEMBER 2019 Y ING 4557

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/12/4553/4879078/m
w

r-d-19-0170_1.pdf by guest on 26 August 2020



generated by random draws from a Gaussian distribu-

tion with zero mean and standard deviation of 1.

The ensemble square root filter (EnSRF) is chosen as

the ensemble filtering method for the DA step (13). The

filter belongs to the deterministic square root family of

ensemble Kalman filters (Anderson 2001; Whitaker and

Hamill 2002; Tippett et al. 2003). The observations at a

particular analysis cycle are assimilated serially, and a

square root factor is applied to the increments to en-

semble perturbations to account for the fact that the

observation is not perturbed according to its un-

certainty for each member. The initial ensemble is

generated by randomly perturbing the true u field

with a tiny white noise, and spinning up with ensem-

ble forecasts for 0.5 time units, allowing the flow-

dependent errors to develop. To reduce the negative

impact of sampling errors in the ensemble estimated

error covariances, the Gaspari and Cohn (1999) local-

ization function is applied to reduce the impact of

spurious covariance. The localization distance, defined

as radius of influence (ROI) where the covariance is

tapered to zero, is specified differently for each scale.

To achieve best filter performance, shorter ROIs

should be specified for smaller scales due to their

shorter physical correlation lengths, and shorter ROIs

should also be specified when the ensemble size is

smaller. For this study, the localization is manually

tuned for best performance on the first cycle. Table 1

lists the specified ROIs for each scale given a range of

ensemble sizes. To avoid filter divergence due to an

underdispersive ensemble, an inflation factor is applied

to the posterior ensemble perturbations, and the in-

flation factor is derived adaptively according to the

Desroziers et al. (2005) analysis error statistics, which

is similar to the adaptive inflation ideas documented by

previous studies (e.g., Anderson 2007; Li et al. 2009).

The widely applied relaxation-to-prior-perturbation

method (Zhang et al. 2004) was not chosen for in-

flation, because the mixing of prior and posterior per-

turbations potentially destroys the structure of aligned

features in the analysis members. For the alignment

step, the Horn and Schunck (1981) optical flow algo-

rithm is used to solve (14) for each member. The

strength of the smoothness constraint is set to a25 100.

The displacement vectors are computed based on the

top (observed) layer and applied to the model state on

both layers.

Three methods will be compared: the multiscale

alignment (MSA) method as described in section 2, the

multiscale (MS) method that is similar to MSA but does

not apply the alignment steps, and the single scale (SS)

method that only performs EnSRF on the full state

without iterating over different scales. The MS method

is similar to the multiscale DA methods in previous

FIG. 1. A snapshot of top-layer model state (temperature field) from (a) truth, and (b) observing network used in

the DA experiments.

TABLE 1. Localization distance (ROI; number of grid points)

specified for the L,M, and S scales in theMSAmethod for different

ensemble sizes.

Ensemble size (N)

Localization distance (ROI)

L scale M scale S scale

5 12 8 5

10 18 12 7

20 24 16 10

40 30 22 15

80 30 22 15
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studies (e.g., Li et al. 2015; Buehner and Shlyaeva 2015)

but in an ensemble filtering formulation. The SS method

is similar to the traditional EnSRF widely used in op-

erational numerical weather prediction. The localiza-

tion ROI for theM scale from theMSmethod is applied

as the overall ROI in SS.

Two sets of sensitivity experiments are performed to

test thesemethods under different conditions. First, with

cycling period set to 0.1 time units, a range of ensemble

sizes (N5 5, 10, 20, 40, and 80) are tested. As ensemble

size decreases, more severe sampling errors are present.

Second, fixing ensemble size toN5 20, different cycling

periods (0.05, 0.1, 0.15, 0.25, 0.4, and 0.5 time units) are

tested. The shortest cycling period is shorter than the

eddy turnover time for all scales, making the error

growth mostly linear, while the longer cycling periods

allow errors to grow more nonlinearly. As a result, the

prior error distribution varies from nearly Gaussian

(shorter cycling periods) to non-Gaussian (longer cy-

cling periods).

4. Experiment results

a. Impact of alignment step on ensemble

The different stages of u fields from one of the en-

semble members is shown in Fig. 2 to illustrate theMSA

method step by step. First, the prior state is decomposed

into L, M, and S scale components over which the iter-

ations will take place. The first iteration (s 5 1) oper-

ates on the L-scale component. The priorXb
1 is shown in

Fig. 2a. Since there are no larger-scale displacements for

the L scale, the aligned prior (Fig. 2b) is the same as the

prior. Figure 2c shows the posteriorXa
1 5Xb

1 1 dX1 from

running the EnSRF at L scale (the DA step). Two

highlighted contours from the prior and the truth reveal

that the location differences of the contour lines are not

as large as the size of u features (warm and cool anom-

alies). Since the displacement errors are approximately

linear, they are reduced by the ensemble filter in the

posterior. The displacement q0
s derived from the anal-

ysis increment dX1 is overlaid on Fig. 2b. The second

iteration (s 5 2) operates on the M-scale component.

The prior Xb
2 is shown in Fig. 2d, and the aligned prior

Xb
2(q

0
1) is shown in Fig. 2e. The position errors at this

scale are comparable to the size of features. With

L-scale displacement errors reduced, the aligned prior

still has some displacement errors at the M scale. The

DA step yields a posterior at M scale (Fig. 2f) as

Xa
2 5Xb

2(q
0
1)1 dX2, and the M-scale displacement q0

2

derived from dX2 is overlaid on Fig. 2e. The third it-

eration (s5 3) operates on the S scale component. The

prior Xb
3 is shown in Fig. 2g, and the aligned prior

Xb
3(q

0
1 1 q0

2) is shown in Fig. 2h. Because the S-scale

component has experienced 2–3 eddy turnover times

during the forecast, the prior u features have some

structural errors in addition to being in the wrong lo-

cation. However, with both the L- and M-scale dis-

placements applied, the aligned prior has a pattern

much closer to the truth than the original prior. The

DA step yields the posterior at S scale (Fig. 2i) as

Xa
3 5Xb

3(q
0
1 1 q0

2)1 dX3. The final analysis field is the

sum of the posteriors at all three scales.

Figure 3 displays the whole 20-member ensemble at

S scale. The prior ensemble (Fig. 3a) shows a very scat-

tered pattern among members. The domain averaged

root-mean-square error (RMSE) of the ensemble mean

with respect to the truth is 1.66, and the averaged pattern

correlation (PC) between members and the truth is 0.31.

The posterior from running the multiscale EnSRF (MS

method) is shown in Fig. 3b; the RMSE is reduced to

1.31, and PC improved to 0.66. However, many noisy

patterns remain. The aligned prior ensemble shown in

Fig. 3c is the prior ensemble with L- and M-scale dis-

placements removed from each member. The displace-

ments alone reduce the RMSE to 1.51 and improve PC to

0.51. Note that there are still significant position and

structure errors at the S scale left in the aligned prior, but

the alignment step preconditioned the ensemble so that

the nonlinearity caused by displacement is reduced. As a

result, the posterior ensemble using the MSA method

(Fig. 3d) shows better agreement with the truth (RMSE is

1.26 and PC is 0.69) compared to the MS method. The

noisy signals that are contaminating the pattern-free re-

gions in the MS posterior are much reduced in the MSA

posterior, which is beneficial for the ensuing ensemble

forecasts.

b. Cycling DA results

The performance of SS, MS, and MSA methods are

further evaluated by running cycling DA trials with

cycling period of 0.1 time units for each method with

varying ensemble sizes of N5 5, 10, 20, 40, and 80. The

domain-averaged RMSEs of the posterior and prior

ensemble mean from 200 cycles are summarized in

Figs. 4a and 4b. The average RMSE and consistency

ratio (CR) are listed in Table 2. The CR is defined as

the ratio between the ensemble spread and the RMSE

of the ensemble mean, which is less than 1 if the en-

semble is underdispersive and can potentially lead

to filter divergence. Statistical significance of the im-

provement of one method over another is estimated

by student t tests comparing the error reductions from

the 200 cycles to zero. Temporal correlation coeffi-

cient of analysis errors between cycles is found to be

less than 0.1, which means the results from each

cycle can be treated as quasi-independent samples.

DECEMBER 2019 Y ING 4559

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/12/4553/4879078/m
w

r-d-19-0170_1.pdf by guest on 26 August 2020



Smaller ensemble sizes have larger RMSEs due to the

larger sampling errors in covariance estimates. For

smaller ensemble sizes, significant improvements from

SS toMS and fromMS toMSAmethods are found. For

the N 5 5 case, the MS method reduces the posterior

errors from the SS method by 6.1%, and the MSA in-

troduces an extra 10.9% error reduction over MS. The

alignment technique improves the posteriors more

than the multiscale scheme for ensemble sizes smaller

than 40. TheMSA also outperformsMS throughout the

ensemble forecasts, as indicated by the prior RMSEs.

The adaptive inflation has prevented filter divergence,

although the ensemble spread tends to be smaller than

ideal after running the EnSRF (CR , 1). The multi-

scale localization in MS improves the consistency

compared to the SS method. The alignment technique

tends to reduce the ensemble spread, making the con-

sistency of MSA comparable to the SS method for the

posterior ensemble. Since the inflation factors used in

these experiments are not spatially varying and scale

dependent, a more carefully designed inflation scheme

can potentially improve the consistency; this will be

further investigated in future studies. For the largest

ensemble (N 5 80), the MS-SS and MSA-MS error

FIG. 2. Stages of the top-layer u field frommember 1 during the firstMSA analysis cycle. (left) Priors beforeDA, (center) priors after the

alignment step, and (right) posteriors after DA are shown for (top) large, (middle) medium, and (bottom) small scales. The color shadings

are the u field from 240 to 40, one highlighted contour is shown in red for each field, and their corresponding truth contour is shown in

black. Displacement vectors from the aligned priors to posteriors are overlaid on their corresponding aligned priors.
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reductions become relatively small and no longer sta-

tistically significant.

The second set of sensitivity experiments is running

200 cycles of DA trials of the SS,MS, andMSAmethods

with ensemble size fixed at N 5 20 and varying cycling

periods of 0.05, 0.1, 0.15, 0.25, 0.4, and 0.5 time units. The

posterior and prior RMSEs are summarized in Figs. 4c

and 4d, and the averaged RMSE and CR are listed in

Table 3. The overall RMSEs increase as the cycling

period gets longer as expected. SignificantMSA-MS and

MS-SS improvements are found in posterior RMSEs for

the whole range of cycling periods. The advantage of

using multiscale localization over single scale is in-

creasing as the cycling period increases and the prior

errors are increasingly dominated by larger scales. For

the cycling period of 0.1, the MS method reduces the

posterior errors from the SS method by 1.7%, and the

MSA introduces an extra 5.6% error reduction overMS.

The alignment technique reduces more posterior errors

than the multiscale scheme for cycling periods 0.1, 0.15,

and 0.25. These cases feature an error growth time that is

similar to the eddy turnover time at S scale (0.2). This

time is not so short that the errors are mostly linear nor

so long that structural errors dominate displacement

FIG. 3. Spaghetti plots of (a) prior ensemble, (b) posterior ensemble from running multiscale EnSRF without the

alignment step (MS), (c) the prior ensemble after the alignment step, and (d) the posterior ensemble (MSA). All

results are shown from the first analysis cycle. The contours for u563 are shown from the truth (thick black lines)

and each ensemble member (colored lines) filtered for the small scale (k . 15). Only part of the model domain,

indicated by the box in Fig. 2i, is shown for clarity.
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errors. For the shortest cycling period (0.05), the prior

errors are mostly linear because less than one eddy

turnover time has passed for all scales. In this case, the

prior errors are nearly linear and the EnSRF gives a

nearly optimal solution. On the other hand, for longer

cycling periods (0.4 and 0.5), the S scale has experienced

several eddy turnover times and the highly nonlinear

prior errors pose challenges for all three methods.

FIG. 4. Boxplots of domain-averaged RMSE of the ensemble mean u fields with respect to truth from the 200

analysis cycles for (a),(c) posterior and (b),(d) prior ensembles. The SS, MS, and MSA cases are compared and

plotted for two scenarios: (a),(b) fixing cycling period to 0.1 time units and vary ensemble sizes from N 5 5–

80members, and (c),(d) fixing ensemble size toN5 20members and vary cycling periods from 0.05 to 0.5 time units.

Note that the displayed error ranges are different for each panel.

TABLE 2. Domain-averaged RMSE of posterior and prior ensemble means with respect to truth averaged over the 200 analysis cycles

shown for cases with ensemble sizes fromN5 5 to 80 with cycling period of 0.1 time units. Corresponding consistency ratios are shown for

each case in parentheses. Reduction of errors from SS to MS and fromMS to MSA are also shown. A student’s t test is performed on the

MS-SS and MSA-MS differences against zero, and the bold fonts indicate statistical significance at p , 0.01 level.

Ensemble size

Error of ensemble mean (consistency ratio) Error reduction

SS MS MSA MS-SS MSA-MS MSA-SS

Posterior 5 1.96 (0.83) 1.84 (1.01) 1.64 (0.88) 20.119 20.200 20.319

10 1.54 (0.82) 1.46 (0.98) 1.35 (0.85) 20.076 20.112 20.188
20 1.31 (0.84) 1.29 (0.97) 1.21 (0.83) 20.022 20.072 20.094

40 1.19 (0.88) 1.20 (0.94) 1.15 (0.83) 0.010 20.045 20.035

80 1.09 (0.93) 1.10 (0.94) 1.09 (0.91) 0.009 20.004 0.005

Prior 5 2.33 (1.05) 2.31 (1.04) 2.16 (0.93) 20.022 20.146 20.168
10 1.94 (0.95) 1.91 (0.98) 1.82 (0.89) 20.033 20.090 20.123

20 1.72 (0.94) 1.73 (0.96) 1.66 (0.87) 0.010 20.062 20.052

40 1.61 (0.95) 1.63 (0.94) 1.60 (0.87) 0.026 20.037 20.011

80 1.52 (0.97) 1.53 (0.97) 1.53 (0.95) 0.012 20.005 0.007
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For prior errors (forecasts), the improvement from MS

becomes insignificant, while the MSA method only

brings significant improvement for cycling periods 0.1

and 0.15. The ensemble spread behaves similarly to that

from the previous set of experiments; MS method has

the best consistency while SS and MSA methods are

slightly underdispersive.

5. Discussion and conclusions

This study proposes a multiscale alignment (MSA)

method for ensemble filtering to reduce the impact of

displacement errors due to nonlinear error growth. The

MSAmethod is based on a multiscale ensemble filtering

scheme that iteratively processes the different scales of a

model state from the largest to the smallest. At each

scale, the traditional ensemble filter is applied to update

the state with observations. The analysis increments

are then utilized to derive sets of displacement vectors

through the Horn and Schunck (1981) optical flow al-

gorithm for each member. The larger-scale displace-

ments are used in an alignment step for the smaller-scale

prior ensemble states before the DA step takes place.

This alignment step removes the larger-scale displace-

ment errors from the prior, and conditions the prior to

have more linear residual errors to be further corrected

by the ensuing ensemble filter step. Cycling DA trials

with 200 cycles using the two-layer quasigeostrophic

(QG) model show that the proposed MSA method sig-

nificantly improves the accuracy of posteriors compared

to existing multiscale localization methods. The MSA

method is most advantageous when the ensemble size

is small and the cycling period is comparable to the

average eddy turnover time of the dynamical system.

The current study provides a proof-of-concept test of

the proposed MSA method in a simplified QG system;

the application of MSA to real atmospheric prediction

models is currently being investigated.

In terms of computational cost, the EnSRF has a cost

ofO(nXnYN) during the DA step, where nX is the size of

state, nY is the number of observations, and N is the

ensemble size. Note that ns is the number of scales. The

optical flow algorithm during the alignment step costs

O(nXni) for each member, where ni is the number of it-

erations used in the Horn and Schunck (1981) algorithm

(ni; 20 is usually enough). Therefore, the total cost of the

MSA method, as prototyped and tested in this paper, is

O[nsnX(nY1 ni)N]. As discussed in section 2, the optical

flow algorithm is solving a quasi-linear system of the

displacement, which is much cheaper than the nonlinear

cost function formulation of the same problem (e.g.,

Ravela et al. 2007; Nehrkorn et al. 2014; Stratman et al.

2018). Potentially, the number of state variables for

larger scales can be reduced to further save compu-

tational cost. Assume that, for a one-dimensional do-

main with nX variables, the resolution is reduced by a

factor of 2(ns2s) for scale s. The total number of state

variables becomes [11 (1/2)1 � � � 1 (1/2ns21)]nX , 2nX .

This setup will result in a total cost that is no more

than O[2nX(nY 1 ni)N] no matter how large ns is. An op-

timal scale decomposition method for a particular model

state is by itself an interesting research problem.

Since the computational cost of the MSA method in-

creases with the number of scales, it is desirable to de-

compose the state into as few scales as possible. The

necessity of the alignment step is determined by the

amount of displacement errors in the prior ensemble,

which also depends on the observation frequency (cy-

cling period). The cutoff of the largest scale is recom-

mended to be chosen so that the state contains mostly

linear prior errors with displacements smaller than the

sizes of features; the next scale can be selected so that

TABLE 3. As in Table 2, but showing cases with varying cycling periods from 0.05 to 0.5 time units, all cases using an ensemble size of

N 5 20 members.

Cycling period

Error of ensemble mean (consistency ratio) Error reduction

SS MS MSA MS-SS MSA-MS MSA-SS

Posterior 0.05 1.05 (0.82) 1.01 (0.91) 0.99 (0.81) 20.039 20.022 20.061

0.1 1.31 (0.84) 1.29 (0.97) 1.21 (0.83) 20.022 20.072 20.094
0.15 1.47 (0.85) 1.43 (1.01) 1.35 (0.87) 20.041 20.071 20.112

0.25 1.65 (0.85) 1.59 (1.08) 1.52 (0.91) 20.058 20.068 20.126

0.4 1.79 (0.84) 1.70 (1.13) 1.65 (0.92) 20.094 20.050 20.144

0.5 1.85 (0.81) 1.74 (1.12) 1.71 (0.90) 20.111 20.031 20.142
Prior 0.05 1.24 (0.88) 1.21 (0.92) 1.18 (0.82) 20.031 20.023 20.054

0.1 1.72 (0.94) 1.73 (0.96) 1.66 (0.87) 0.010 20.062 20.052

0.15 2.10 (0.98) 2.11 (1.00) 2.07 (0.92) 0.008 20.039 20.031

0.25 2.78 (1.02) 2.80 (1.05) 2.77 (0.97) 0.024 20.030 20.006

0.4 3.62 (1.06) 3.63 (1.08) 3.61 (1.00) 0.013 20.026 20.013

0.5 4.11 (1.04) 4.10 (1.05) 4.09 (1.00) 20.011 20.001 20.012
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displacement errors start to introduce nonlinearity (cy-

cling period comparable to the averaged eddy turnover

time); the smallest scale can be the highly nonlinear

error growth regimes without enough constraints from

observations. Observations with different spatial den-

sity can be applied to the DA steps for different scales

too. For dense observations, super observations can be

used for the large-scale iteration to further reduce

computational cost.

The MSA method uses the same observation to up-

datemodel state at different scales. For a given scale, the

observation information is used multiple times: several

times in the displacement vector calculation from pre-

ceding scales and another time during theDA step of the

current scale. Assimilating duplicate information can

potentially cause issues such as overfitting the observa-

tions. In this study, adaptive covariance inflation is ap-

plied to avoid this issue. Using the observation more

than once is a common issue in iterative DA methods.

For example, the incremental 4DVar (Courtier et al.

1994) reevaluates the cost function in between iterations

(outer loops) to include more details in the smaller

scales, and assimilates the observation again during

the next minimization step. Inflating the observation

error variance during iterative assimilation is another

method to avoid overfitting, which is also known as

‘‘tempering of the observation likelihood’’ (see section

3.2 in van Leeuwen et al. 2018). Perturbations can also

be added to the displacement vectors. These potential

treatments in MSA method can be further investigated

in future studies.

The QG model state is defined on a doubly periodic

domain, therefore boundary condition is not considered

during the calculation of displacement vectors. For re-

gional models, more constraints need to be considered

for the displacement vectors. For example, displacement

vectors can only be zeros along the lateral boundaries,

and the dynamic and thermodynamic fields need to re-

main in physical balance after displacement. One can

refer to Nehrkorn et al. (2014) for additional treatments

necessary for displacement vectors when applied to a

hurricane case using the Weather Research and Fore-

casting (WRF) Model.

For the case when observations are sparse, the cost

function used in FCA method that is formulated in ob-

servation space can be ill-conditioned. The state-space

cost function in the optical flow algorithm will allow a

more robust solution, since there will always be a pair

of full images from the prior and posterior states, and

displacement vectors are only derived where observa-

tions are available. In this study, the displacement vec-

tors are determined by the top-layer temperature field

increments and applied to both layers, because the QG

model state is mostly barotropic. For more complex

three-dimensional models with different vertical modes,

the displacement vectors can potentially be derived

separately for each level according to their analysis in-

crements. For models with several state variables, the

ensemble filter will update each variable according to

the cross-variable covariance estimated from the en-

semble. The displacement vectors can potentially be

derived separately from the increments in each variable,

which will result in amore physically consistent solution.

A Python code package for theMSAmethod described

in this study, along with the QG model code (courtesy of

Dr. Shafer Smith) and the configuration of experiments

conducted in this study, can be found at https://github.com/

myying/QG_Multiscale_DA. Currently, the MSAmethod

is being implemented in the Data Assimilation Research

Testbed (DART) framework, and real-data experiments

are being conducted to further test its utility.
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